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Abstract

Title: Unfolding Polyhedra
Author: Phillips Alexander Benton

It is a common conjecture that all convex polyhedra must be edge-unfoldable
but to date a valid proof of this has escaped discovery. This dissertation presents
several new directions in the quest for the proof. Also discussed is a method
which may lead to a counterexample to the conjecture through the construction
of ‘hard to unfold’ polyhedra.

Algorithmic solutions are discussed for the task of determining the specific
set of edges which must be cut in order that an unfolding not self-intersect.
A series of Unfolder algorithms are explored and compared, in terms of both
algorithmic design and empirical performance on test data.

No surface of uniformly negative internal curvature with fewer than two
border curves is unfoldable. The coolinoids are a class of non-convex polyhe-
dra having exactly two border curves and negative curvature at every internal
vertex, which may be constructed so as to be unfoldable without overlap. The
fascinating interaction between construction and overlap in coolinoids is mod-
eled and explored.
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Albrecht Dürer’s net of a dodecahedron (Dür25, Fig.33)



Preface

Almost 500 years ago...

In 1525 at the heart of the European Renaissance, in a time when Mathematics
and Art were much closer bedfellows than they are today, the artist Albrecht
Dürer published Underweysun der Messung (“The Painter’s Manual”). Dürer
wanted to teach his fellow artists and architects how they could re-create vari-
ations on Euclid’s corpa regularia, the Platonic Solids. Dürer provided a new
sort of diagram: he showed each solid inscribed within a sphere, as Euclid had
done, and then showed the same solid opened up, unfolded to what he called
the ‘ground plan’ of the shape: what today we call the net or unfolding. This
marked the first recorded use of unfoldings in history.

Since Dürer’s day unfolded nets have spread far and wide. The Developable
Surface series of sculptures by Antoine Pevsner (1884–1962) was based on ruled
surfaces which could be unfolded into the plane. Many commercial products
available today are assembled from folded forms in steel or plastic; automated
steel-bending and assembly is an active field of research (GBKK98). Even mo-
torcycle enthusiasts are venturing into unfolding: papercraft models are becom-
ing ever more popular through the internet, to the point where Yamaha Motors
now offers online blueprints to let aficionados cut out, fold up and assemble
copies of their favorite Yamaha bikes in the comfort of home (Yam05).

Dürer may never have planned on papercraft motorcycles but he did, inad-
vertently, raise some very interesting questions. The Painter’s Manual is replete
with unfolded nets of platonic solids and their truncations. How did Dürer find
his unfolded nets in 1525? Was it simply luck that he chose unfoldings which did
not overlap, or was there method to his choice? Beneath his innocuous manual
of instruction lurks fascinating questions.

This dissertation is the result of the author’s own work and includes nothing
which is the outcome of work done in collaboration except where specifically
indicated in the text.

Cover image: “The Innocent Eye Test”, Mark Tansey, 1981.
Permanent collection of the Metropolitan Museum of Art, New York City, NY.
http://www.metmuseum.org.
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Chapter 1

Introduction

1.1 Thesis

This dissertation examines two long-unanswered questions:

• Can every convex polyhedron be edge-unfolded ; that is, can every convex
polyhedron be cut along some of its edges and unfolded flat into a simple
polygon which does not overlap itself? And,

• Given an arbitrary polyhedron, convex or non-convex, how can an unfold-
ing of the polyhedron be efficiently found; or, if none exists, how quickly
can this fact be determined?

The following new results are presented:

• A series of negative results are presented on the construction of the proof
that all convex polyhedra are unfoldable.

• Several positive approaches are proposed, such as a Euclidean-style proof,
the alpha-beta rules, and error correction, each of which show promise in
the quest for the proof of convex unfoldability.

• A new form of construction which produces ‘hard to unfold’ convex poly-
hedra, polyhedral banding, is discussed as a possible path toward building
a convex polyhedron which is not unfoldable.

• A series of algorithms for unfolding convex and non-convex polyhedra are
discussed and compared, outlining the strong points and shortcomings of
each.

• The coolinoid, a surface of uniformly negative internal angle deficit, is
explored in detail and an automated method for unfolding a coolinoid is
described.

1.2 Terminology

1.2.1 Geometric primitives

Point, Vertex A point or vertex is a location in <3. The term ‘point’ is
commonly used to describe a location in space in its own terms, whereas

1



2 CHAPTER 1. INTRODUCTION

(a) <0 (b) <1 (c) <2 (d) <3

Figure 1.1: Minimal forms (simplexes) in <k: (a) Point (b) Edge (c) Triangle
(d) Tetrahedron

‘vertex’ is often used when speaking of a point in the larger context of
connectivity with other data. The scalar distance between two points A
and B is denoted |A−B|1.

Edge An edge is the set of all points in <3 which lie on the line segment between
two vertices. The edge AB is defined by endpoints A and B as the set of
all points P such that P = A+ t(B −A), t ∈ [0 . . . 1].

Polygon A polygon is a coplanar non-empty set of points in <3 bounded by a
closed, connected set of edges, in which edges meet only at their vertices
and exactly two edges meet at every vertex. If a polygon is convex then
for any two edges A and B in the polygon, all points in B which are not
in A lie to the same side of the line containing A.

The angle at which two edges AV and BV meet at the vertex V of a
polygon F is called the incident angle of F at V . The incident angle is
the area of the intersection of the polygon with a circle of small radius r
centered at V , divided by 2/r2. If F is convex, the incident angle α(F, V )
of F at V is more easily calculated as

α(F, V ) = cos−1

(
(A− V ) · (B − V )
|A− V ||B − V |

)
(1.1)

Polyhedron A polyhedron2 (pl: polyhedra) is a connected set of polygons which
meet only at their edges with no more than two polygons meeting at

1This should not be confused with the notation for the number of elements in a set S,
which will be denoted by ‖S‖.

2Given that it is natural for humans to want to describe a discrete ‘shell of a thing’ in
unambiguous mathematical terms, it is unsurprising that a number of definitions of polyhedra
have arisen over the years. These definitions broadly break down into two categories: those
which describe polyhedra as volumes, whose surfaces have traits akin to those given here; and
those which describe polyhedra as surfaces, often assembled from lesser elements, which follow
similar rules.

For example, in his 1932 Einfachste Grundbegriffe der Topologie (‘Elementary Concepts of
Topology’) (Ale61, p.6), Paul Alexandroff elegantly defines an r-dimensional polyhedron as

. . . a point-set of <n which can be decomposed into r-dimensional simplexes in
such a way that two simplexes of this decomposition either have no points in
common or have a common face (of arbitrary dimension) as their intersection.

. . . which is to say, he defines a polyhedron as a connected set of tetrahedra. Alexandroff de-
scribes a body which is implicitly solid (because every non-degenerate tetrahedron has nonzero
volume) and is implicitly without border because his tetrahedra, defined by 3-simplexes, are
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(a) (b)

Figure 1.2: Polyhedra: (a) A non-simplicial genus-zero polyhedron (b) A sim-
plicial genus-one polyhedron

a single edge. A polyhedron composed entirely of triangles is called a
simplicial polyhedron; a polyhedron in which every edge is shared by
exactly two polygons is said to be closed or without border (sometimes
written without boundary.) An individual polygon F which is part of a
polyhedron P is often called a face of P . In fields such as computer-aided
geometric design the alternative term facet may be used.

Other key terms in the field of polyhedra include:

Convex Polyhedra If a set of infinite half-planes have a finite non-empty in-
tersection, then the surface of their intersection is a convex polyhedron.
If a polyhedron is convex then for any two faces A and B in the polyhe-
dron, all points in B which are not in A lie to the same side of the plane
containing A. (Pin07)

A polyhedron with border which is a subset of a convex polyhedron is
called a convex cap.

Genus The genus g of a polyhedron is

without border.
Imre Lakatos considers a number of definitions of polyhedra in his 1976 Proofs and Refu-

tations (Lak76). These definitions range from the solid body style,

A polyhedron is a solid whose surface consists of polygonal faces (Lak76, p.14)

to the surface-oriented definition,

[A polyhedron is] a system of polygons arranged in such a way that (1) exactly
two polygons meet at every edge and (2) it is possible to get from the inside of
any polygon to the inside of any other polygon by a route which never crosses any
edge at a vertex (Lak76, p.15)

which describes a polyhedron in terms of surface only, placing no constraints on an interior
volume.

In the field of unfolding, interest lies always with the surface of the form, and so the author
chooses to follow Lakatos’ second camp of thought but chooses a slightly more lax definition
of a polyhedron. Specifically, by relaxing condition (1) in Lakatos’ definition to ‘at most two
polygons meet at every edge’, the author allows polyhedra with border. This is an essential
choice for certain results to be presented. It would, of course, be impossible to speak of
polyhedra with border if the conception of a polyhedron were solid.
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...a topologically invariant property of a surface defined as the
largest number of nonintersecting simple closed curves that can
be drawn on the surface without separating it. (Wei99)

or, more informally, the number of ‘coffee cup handles’ the surface pos-
sesses. For example, the genus of a torus is one. The genus of every convex
polyhedron is zero (Figure 1.2.)

Euler Characteristic A number of results have been found on polyhedra
without border. One critical theorem is the Poincaré formula (Wei99):

χ = V − E + F = 2− 2g (1.2)

which states that χ, the Euler characteristic of the polyhedron, is equal to
the number of vertices in the polyhedron minus the number of edges plus
the number of faces. The genus g is equal to 1 − χ/2. For every convex
polyhedron, χ = 2.

1.2.2 Curves on polyhedra

Polygonal Curve A polygonal curve C is a path across a polyhedron, a series
of line segments defined by a series of corners C = (c0, c1, . . . , cn−1) on
the surface. Corners may be vertices of the polyhedron, points on edges
or points within faces. A curve in which c0 = cn−1 is closed.

By convention, polyhedral curves are considered to be directed, with in-
dices increasing counterclockwise. For a closed directed curve, any point
on the polyhedron which can be reached by a path from the left-hand side
of the curve without crossing the curve is said to lie on the interior of the
curve.

Interior Angle of a Curve (‘Surface Angle’) The interior angle αci
of a

directed curve at corner ci is derived in much the same manner as the
incident angle of a face at a vertex. (In fact, one might think of the corner
and edge segments of the curve as a vertex and two edges, embedded in
the surface of the polyhedron.) Thus αci is defined to be the total surface
area of all points on the polyhedron interior to the curve which are also
enclosed within a ball of small radius r centered at ci, divided by 2/r2.

The interior angle at ci is also sometimes denoted by λ(ci), the left interior
angle of ci. This is complemented by ρ(ci), the right interior angle. ρ is
calculated as above but assumes a clockwise ordering of the vertices of C,
which exchanges the interior and exterior of the curve; although the term
is defined, the reader is cautioned that such an ordering is not commonly
used in computational geometry.

λ and ρ are only defined for vertices at which exactly two incident edges
have been cut.

Convex Curve A directed polygonal curve on a polyhedron is a convex curve
iff 0 < αci

≤ π for all ci.

Smooth Geodesic A geodesic on a smooth surface is the shortest path on the
surface between two points. On a sphere, this identifies the arc joining
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two points; for example, the geodesic between two points on the Earth’s
equator would be the intervening length of the equator itself.

Discrete Geodesic A geodesic path on a polyhedron becomes a discrete geodesic,
which is a type of polygonal curve. In (AAOS90) a geodesic on a polyhe-
dron is defined to be

[...]a path π on [the polyhedron] that cannot be shortened by a
local change at any point in its relative interior. Equivalently,
a geodesic on the surface of a convex [polyhedron] is either a
subsegment of an edge or a path that (1) does not pass through
corners, though may possibly terminate at them, (2) is straight
near any point in the interior of a face and (3) is transverse
to every edge it meets in such a fashion that it would appear
straight if one were to [apply a solid body transformation to
each of the two faces so that their normals are coincident.]

1.2.3 Curvature of discrete surfaces

Gaussian Curvature The Gaussian curvature of a region of a surface is the
ratio between the area of the unit sphere swept out by the normals of
that region and the area of the region itself, and the Gaussian curvature
of a point is the limit of this ratio as the region tends to zero area. On
a discrete surface, however, normals do not vary smoothly; the normal
to a face is constant on the face, and at edges and vertices the normal
is–strictly speaking–undefined. Thus normals change instantaneously (as
one’s point of view travels across an edge from one face to another) or not
at all (as one’s point of view travels within a face.) The Gaussian curvature
of the surface of any polyhedral mesh is therefore zero everywhere except
at the vertices, where it is infinite. The total curvature of a discrete
surface remains well-defined but to find a useful measure of curvature at
an individual vertex, a better solution is needed.

Angle Deficit A number of approaches have been devised for determining the
discrete curvature of a surface at a vertex, and Meyer et al. provide a
very accessible description of the Gauss-Bonnet scheme in (MDSB02). A
simplified form of the Gauss-Bonnet scheme is the angle deficit method,
well-described by Van Loon in (Loo94), p.5. The angle deficit AD(V ) of
a vertex V is defined to be:

AD(V ) = 2π −
∑

α(f, V ) (1.3)

Angle Deficit of a Polyhedron The total angle deficit of a polyhedron P is
the sum of the angle deficits of every vertex of the surface, denoted by ∆.
Descartes’ theorem of Total Angle Deficit states that (Wei99)

∆ =
∑
∀v∈P

AD(v) = 2πχ (1.4)

and so the total angle deficit ∆ of a surface with genus g is equal to
4π (1− g). For every convex polyhedron ∆ = 4π.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: (a, b) A vertex with high positive angle deficit; (c, d) A vertex with
low positive angle deficit; (e, f) A vertex with negative angle deficit. Vertices
with higher angle deficit have higher curvature and flatten to a wider gap when
cut open; vertices with negative angle deficit have negative curvature and overlap
when flattened.



1.2. TERMINOLOGY 7

Figure 1.4: The inner half of a torus, shaded by angle deficit. The innermost red
band has most negative curvature; arrows indicate the vector field of curvature
flow from negative toward zero curvature.

Spherical Vertices A vertex with positive angle deficit is sometimes called a
spherical vertex. If one were to stand atop a spherical vertex, aligning
oneself with the average of the normals of the surrounding faces, then all
edges emanating from the vertex would either rise up or drop away, as
though one stood atop a mountain or at the bottom of a valley.

Hyperbolic Vertices A vertex with negative angle deficit is sometimes called
a hyperbolic or saddle vertex. If one were to stand atop a hyperbolic
vertex, aligning oneself with the average of the normals of the surrounding
faces, then some of the edges emanating from the vertex would seem to
rise up while other descended, as though one were crossing a pass in a
mountain range; slopes ascending to either side but dropping away ahead
and behind. More complicated hyperbolic vertices, those with more than
the minimal number of two descending and two ascending regions of edges,
are called monkey saddles.
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1.2.4 Graphs and trees

Graph A graph is a set of nodes linked by edges. In a purely abstract graph a
node has no inherent value and edges are defined only by the fact that they
connect two nodes. Graphs are often used to describe sets of interrelated
objects in terms of their connections. (Graph edges should not be confused
with polygon edges!)

Valency The valency of a node in a graph is the number of edges connecting
that node to others. A node of valency one is a leaf node of the graph. A
node of valency greater than two is a branch node of the graph. A branch
node of valency 3 is sometimes called a Y-fork in the graph.

Path A path is a connected, ordered sequence of edges in a graph. Each edge
in the path shares one node with the previous edge and one with the next,
visiting each node in turn.

Connectivity A graph in which, for every node, there exists a path linking
that node to every other node, is connected ; a graph where this is not
the case is called unconnected. A graph in which at least k edges must
be removed before the graph becomes unconnected is called k-connected;
for example, the graph of the connectivity of the vertices of a cube is
3-connected, because a cube has three edges visiting each of its vertices.

Cycles A graph in which there exists no node which can be reached by two
distinct (non-overlapping) paths from any other node, is said to be acyclic.
Conversely if there are two nodes in the graph for which there are multiple
distinct (non-overlapping) paths then those nodes are on a loop or cycle.

Shortest Path The shortest path between two nodes is the path which tra-
verses the least number of edges. The concept of shortest path may be
improved by assigning spatial locations to graph nodes; then the shortest
path can be the path whose total linear length is minimized along the
edges in space.

That said, recall that graphs have no implicit spatial configuration. Thus
the idea of a shortest path may be extended further to ‘weighting’ edges,
by linear distance or by any other scalar weighting function. Then the
shortest path would be the path which minimizes the total ‘weight’ of the
series of edges traversed.

Spanning Graph A spanning graph visits every node exactly once. By defini-
tion a spanning graph cannot contain a loop, for this would mean visiting
the node twice. No edge may be removed from a spanning graph with-
out disconnecting the graph. No edge may be added to a spanning graph
without creating a loop. If a graph has n nodes then any spanning of that
graph will have exactly n− 1 edges.

Hamiltonian Path A connected graph which has no node of degree > 2 is a
Hamiltonian path.

Planar Graph A planar graph may be embedded in <2 without crossing its
edges. Informally, this means that the graph can be drawn on paper with
edges meeting only at the nodes.
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Directed Edges Graphs may be directed or undirected. In a directed graph,
edges are oriented and indicate only a one-way relationship between the
two nodes.

Tree A tree is a connected acyclic graph with orientation. A tree has a distinct
root node, which is said to be at the ‘top’ of the tree. From any node of
the tree, the parent of the node is ‘above’ the node (with no node above
the root) and the children of the node are ‘below’ the node (with no node
below the leaves.) Note that in graph theory, unlike reality, trees grow
down with the root at the top and leaves at the bottom.

Spanning Tree A spanning tree of a graph is an acyclic, connected subset
of the edges of the graph. The root node of a spanning tree may be left
undefined; many uses of spanning trees are interested only in existence, not
orientation. For example, a minimal spanning tree of a graph is a spanning
tree which minimizes some scalar weighting function on the graph.

Binary Tree A binary tree is a tree in which every node except the root node
has valency 1 or 3; the root node has valency 1 or 2. In a strictly binary
tree the root node has valency 1 or 3.

1.2.5 Graphs and polyhedra

1-Skeleton The 1-skeleton of a polyhedron is the graph of the connectivity of
the vertices and edges of the polyhedron. For each vertex of the polyhe-
dron there is a node in the 1-skeleton; for each edge connecting two poly-
hedral vertices, an edge of the 1-skeleton connects the two corresponding
nodes.

Lexicographic Order It is impossible to say that one vertex of a polyhedron
is ‘greater than’ or ‘less than’ another, for points in <3 have no inherent
ordering. Lexicographic ordering is one way to sort points in a consistent
ordering which allows the ‘<’ and ‘>’ operators to apply. In lexicographic
ordering, given two points A and B,

(A < B) = IF (AY 6= BY ) THEN (AY < BY )
ELSE IF (AX 6= BX) THEN (AX < BX)

ELSE (AZ < BZ)

This ordering can then be applied to the vertices of a face f to lexico-
graphically determine the lowest vertex in the polygon (that is, to find
the vertex vi such that vi < vj for all other vj in f). The vertices can
then be ordered in some preset manner, such as counterclockwise about
the outwards-facing normal to the face, to give an absolute and consistent
ordering of the vertices of the face.

By the same token, the faces of a polyhedron may be lexicographically
sorted by their centers and thus absolutely ordered.

1.3 The Unfolding Problem

An edge-unfolding of a polyhedron is a cutting of the surface along its edges
that unfolds the surface to a single, nonoverlapping piece in the plane.
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To be more precise in this definition:

Let U be the tree of faces of the polyhedron P still connected after
some set of edges T in P has been removed. Each node of U is a
face of P ; each edge of U represents an edge of P which was not in
T .

Select an arbitrary face r of P , and compute the solid body transform
(a transformation which preserves distances and angles) Mr which
will rotate r until its normal is collinear with the Y -axis. The choice
of r is immaterial to the computation of the unfolding; different
values of r will change the unfolding only in position and orientation.

Then, for every face f in U which is adjacent to a face u for which
the solid-body unfolding transform Mu has now been calculated,
compute for f the transformation m which will rotate f around the
edge which it shares with u until the normals of f and u are equal.
Record as Mf the concatenated transformation (m ·Mu).

The edge-unfolding of P by T is the figure which is the union of each
of the faces f of P , transformed by Mf .

If there exists some T such that the edge-unfolding of P by T con-
tains no faces which meet at any point other than at edges which
they share in U , then P is said to be edge-unfoldable.

The term ‘edge-unfolding’ will be abbreviated hereafter as simply ‘unfolding’,
unless more precision is called for. (Such as will be the case when discussing
general unfoldings or vertex unfoldings, below.) Likewise any surface which can
be edge-unfolded without overlap is termed simply ‘unfoldable’.

A number of open questions have been put forth in the literature about
unfolding. This work addresses two such questions:

• Are all convex polyhedra unfoldable?

• Can an algorithm be constructed which can find an unfolding of a poly-
hedron (or declare that none such exists) in ‘reasonable’ time?

At first glance, it is unapparent why these questions have remained open, for
they seem to be fairly intuitive. After all, every orange can be peeled; surely,
every orange could be peeled even if one were restricted to a convex set of edges
on the surface? Yet a mathematically sound proof of the unfoldability of convex
polyhedra has continued to elude researchers. The fact that even very simple
polyhedra can be constructed for which not every unfolding is without overlap,
raises the specter that there might exist some polyhedron for which no unfolding
is without overlap.

The Open Problem, as phrased by Joseph O’Rourke, is

Does every convex polyhedron have an edge unfolding to a simple,
nonoverlapping polygon, i.e., does every convex polyhedron have a
net? (DO07)

By the same token, peeling an arbitrary polyhedron would seem to be rel-
atively straightforward. Yet attempts to actually do so according to rigorous
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algorithm have proved remarkably difficult to achieve. It is quite simple to de-
compose an n-faced polyhedron into several smaller pieces, detached from one
another, with the intention of gluing them back together when done (even if
such a decomposition must produce n separate pieces;) but to unfold the sur-
face to a single connected net of faces, unbroken, is often surprisingly difficult.
Simple non-convex polyhedra have been found which have no unfolding at all,
and so any algorithm searching for an unfolding must be prepared to fail.

The challenge, as phrased by Komei Fukuda, is that

While several simple algorithms have been advanced for the reason-
ably quick edge-unfolding of a convex surface, it appears that no
single quick approach is guaranteed to be effective on all surfaces.
(Fuk97)

...and though Fukuda’s challenge was put forward for convex surfaces, it gener-
alizes well to the broader field of convex and non-convex polyhedra.

1.3.1 Terminology of unfolding

Cut An edge or series of edges broken in the course of unfolding a surface is
referred to as a cut.

Cut-Graph Cuts join together to form the cut-graph, a connected undirected
graph of broken edges. There are key restrictions on the number of loops
in the cut-graph, and on the number of loops which may be formed by
taking the union of the cut-graph with the graph of the boundary edges
of the original polyhedron. The cut-graph is a subset of the 1-skeleton of
the polyhedron.

Unfolding Tree The dual of the cut-graph is the unfolding tree, the undi-
rected, connected, acyclic and planar graph of the connectivity which re-
mains between faces after all cuts have been made. The unfolding tree is
a subset of the graph of connectivity of faces of the original source mesh.

Overlap, Self-Intersection, Collision Two faces which, when unfolded, share
points in the unfolding plane other than their edges or vertices, are said
to overlap or collide. The figure formed by the unfolding is then said to
self-intersect.

Net, Unfolding The figure formed by the unfolding of a polyhedron is the
net or unfolding of the polyhedron. A valid net is a net which does not
self-intersect.

Partial Unfolding A partial unfolding is a connected subset of the unfolded
faces of a polyhedron. A valid partial unfolding does not self-intersect.

Development A polyhedron which can be unfolded is called developable3, and
the unfolded net is the development of the surface.

3This usage is common in the literature but it is a slight mischaracterization: to refer
to a surface as developable stems from the original mathematical definition of a developable
surface as a surface with zero Gaussian curvature, which can be ‘developed’ into the plane
without stretching or tearing. Examples of developable surfaces include cylinders, which
unroll into a plane; cones, which unroll to an arc section; and other, more complex forms,
including subsections of other developable surfaces. A sphere–or a polygonal representation
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Left and Right Development Given a cut-graph subset without branch, the
left development of the cut-graph identifies the left-hand set of edges
to which that curve unfolds; the right development describes the right.
(DO07), p. 376.

1.4 Prior Work

Dürer’s Renaissance text is the first recorded use of unfolded nets in publication,
but it was not until Shepard’s 1975 Convex polytopes with convex nets (She75)
that interest in unfolding began to take a visible role in contemporary research.
Since then, a number of interesting avenues have opened in unfolding and related
works.

1.4.1 Alternative unfoldings

One key question has been the precise definition of what an ‘unfolding’ truly
is. This dissertation is entirely focused upon edge-unfoldings but there is, as it
were, more than one way to skin a cat.

General unfoldings

For example, to limit the cuts of an unfolding to the edges of the polyhedron
is an unnecessary restriction: one might also allow cuts across faces, in what
is called a general unfolding. In a general unfolding the cut-graph is no longer
(necessarily) a subset of the 1-skeleton of the mesh; instead it links a set of points
on the surface in paths which divide the surface into developable subsections.
It has been shown that the star unfolding (AO91) and the source unfolding
(MMP87), methods devised to find the shortest paths between points on the
surface, will cut any convex surface and unfold it without overlap.

Vertex unfoldings

Another form of unfolding is the vertex unfolding, in which faces are cut apart at
multiple edges, retaining connectivity only at their vertices. Vertex unfoldings
link faces tip-to-tip, and it is shown in (DEE+02) that every simplicial convex
polyhedron can be vertex-unfolded without overlap. However, it remains an
open question whether the same holds true for non-simplicial convex polyhedra.

1.4.2 The improbability of unfolding

In (O’R00), Joseph O’Rourke relates results derived from Catherine Schevon’s
1989 PhD thesis, Algorithms for Geodesics on Convex Polytopes. Schevon found
that as n, the number of vertices on sets of randomly-generated convex poly-
hedra, rose, the percentage of randomly-selected unfoldings of the polyhedra
which unfolded to overlap rapidly approached one; that is, as the polyhedra in-
creased in complexity, the odds of their being unfoldable by a randomly-chosen

of a sphere–is not developable, for it cannot be flattened without tearing or stretching; but
the polyhedron with border which is created by deleting the edges of a cut-graph from that
sphere is developable, for now the ‘tears’ have already been torn.
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(a) (b)

Figure 1.5: Fukuda and Namiki’s slim tetrahedron, shown unfolded (a) without
and (b) with self-intersection

cut-graph fell to almost zero. And yet, every single polyhedron generated in
Schevon’s tests did have at least one unfolding which was without overlap.

Schevon’s results are mirrored in the statistical analysis of unfolding algo-
rithms conducted for this dissertation, discussed in Section 4.9.

1.4.3 Convex polyhedra with strange unfoldings

Fukuda and Namiki (Fuk97) have shown that even a tetrahedron4 may be con-
structed which has an overlapped unfolding (Figure 1.5.) Two of the sixteen
distinct possible unfoldings of their slim tetrahedron will overlap.

One result which derives trivially from Fukuda and Namiki’s example is that,
if one considers the slim tetrahedron to already be cut by a cut-graph which
introduces overlap, then it can be known that:

Lemma 1.1 (Fukuda) There exists a simplicial convex polyhedron with border
which cannot be edge-unfolded.

Proof. By example; see Figure 1.5 and footnote 4 for co-ordinates. �

1.4.4 Ununfoldable non-convex polyhedra

In their 1999 Ununfoldable Polyhedra with Convex Faces (BDE+03), Bern, De-
maine et al. describe a non-convex polyhedron without border which has no
edge unfolding. This surface, which they assemble from an undevelopable com-
ponent which they call a ‘witch’s hat’, can be generally unfolded but provably
cannot be edge-unfolded without overlap (Figure 1.6.)

1.4.5 Schlickenrieder and Lucier

In his 1997 Master’s Thesis Nets of Polyhedra (Sch97), Wolfram Schlickenrieder
rigorously explored a series of unfolding methods, trying to find a single unfold-

4 The co-ordinates of the slim tetrahedron unfolded in Figure 1.5 were derived by the
author through experiment and may not represent the exact proportions first used by Fukuda
and Namiki. The co-ordinates of the figure shown here are:

[0.0000, 0.0000, 0.0000]
[4.4829, 0.0000, 0.3922]
[6.3000, 0.0000, 0.0000]
[1.8171, 0.4000, 0.1961]

This model, and all others used in this dissertation, is available online. Please refer to
Appendix C for details.
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(a) (b)

Figure 1.6: Bern, Demaine et al.’s witch’s hat assembly, a non-convex surface
which cannot be edge-unfolded without overlap. Shown (a) in perspective and
(b) unfolded to self-intersection.

ing algorithm which would always unfold every surface. Schlickenrieder grouped
his unfolding algorithms as follows:

• Simple unfoldings, such as breadth- and depth-first search

• Shortest-path unfoldings, similar in nature to the general star unfolding

• Directed unfoldings, which used heuristic tree search techniques to choose
a cut-graph

• ‘Shelled’ unfoldings, which trace heuristically-guided paths through the
faces of the polyhedron

• Incremental unfoldings, which use heuristic tree search techniques to choose
an unfolded net

Despite an extensive investigation, Schlickenrieder failed to find a simple algo-
rithmic solution. While several of his methods–most notably the shortest-path
unfolder and the steepest-edge unfolder–could unfold many of the surfaces de-
scribed, he was unable to present an algorithm which could unfold every convex
polyhedron in a single attempt.

In 2006, Brendan Lucier described in his Master’s Thesis Unfolding and
Reconstructing Polyhedra (Luc06, Chap.5) a directed exploration of the con-
ditions which could lead to overlap. Where Schlickenrieder had found specific
empirical counterexamples to his own conjectures, Lucier developed several of
the counterexamples into mathematically-expressible models whose ‘undevel-
opability’ could then be proved. He did so by describing a simple form of colli-
sion, the 2-local collision, and then showing how to construct almost-flat convex
caps which would always unfold to 2-local overlap if unfolded by Schlicken-
rieder’s most viable algorithms. Using these almost-planar figures, Lucier shows
how to construct general counterexamples to Shlickenrieder’s shortest-path and
steepest-edge algorithms.

1.4.6 Angle deficit and cut-graph valence

Konrad Polthier has shown that there is a direct correspondence between the
sign of the angle deficit at a vertex and the number of cuts it requires to avoid
overlap (Pol03):
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• At each spherical vertex there must be at least one cut;

• At each hyperbolic vertex there must be at least two cuts which
take off one or more faces during the unfolding.

Vertices of zero angle deficit may be left completely untouched; they can flatten
to the plane without cutting a single incident edge.

Although Polthier does not state it explicitly, the following lemma derives
trivially from the observations above:

Lemma 1.2 (Polthier) There can never be a leaf node of the cut-graph at a
vertex of negative angle deficit.

Proof. If a branch of the cut-tree were to terminate at a negative-curvature
vertex, only one incident edge would be broken. At least two incident edges must
be cut or overlap is unavoidable. �

A second result of Polthier’s observation is an interesting note on how AD(v)
is calculated. In many applications, angle deficit is rescaled by dividing the sum
of the incident face angles by the area of the local Voronoi triangulation, to
more closely approximate the Gaussian curvature of a smooth surface passing
through the vertex. However, Polthier’s observation makes it clear that such a
step is unnecessary in the context of unfolding: what is critical at the vertex is
the sign of its angle deficit, which is unchanged by scalar division. Magnitude
beyond sign is of secondary importance.

1.4.7 Loops in the cut-graph

In (Ben07, p.3), the author showed that the cut-graph may not loop, nor may
the union of the cut-graph with the boundary graph contain a loop which was
not already in the boundary graph, if there is no handle in the topology of the
polyhedron. If this condition is not met, the unfolding will become disconnected.
The proof is reprinted on page 146 of this work.

From this it is clear that the cut-graph of a genus-zero polyhedron must be
a tree.

1.4.8 Closed convex curves

In (OS89), O’Rourke and Schevon show that

Lemma 1.3 (O’Rourke and Schevon) A closed convex curve [on a convex
polyhedron] develops without self-intersection [that is, it unfolds to two connected
sets of edges which do not cross each other or themselves.]

Proof. O’Rourke and Schevon argue that the interior of any closed convex
curve C on the convex polyhedron P can be removed, and the convex hull taken
of the resulting figure to give a new polyhedron P ′. There are no vertices of P ′

within C and therefore there can be no curvature, and so the interior of C on
P ′ must develop (in the classic sense of the word) to a convex polygon. This
establishes that the left-hand development of the curve does not self-intersect.
With this construction in place, the remainder of the proof is nicely summarized
in (DO07, p.377):
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Let θi be the internal angle at the vertex ai of this planar polygon.
A lemma in O’Rourke and Schevon (1989) establishes the plausible
claim that θi ≤ λ(ci) for all i: cutting away material to form P ′ can
only reduce the angle. Because by assumption we have λ(ci) ≤ π, we
may apply Cauchy’s arm lemma5. Cutting [the right development
of C] at any point p and then “opening” the internal angles from θi
to λ(ci), ensures that the two images of p increase in separation. [...]
A further implication [...] is that [the right development of C] does
not self-intersect.

�

1.4.9 Classes of unfoldable convex polyhedra

A strong direction in recent research has been the identification of classes of
convex polyhedra which can be shown to be unfoldable. Ideally, these classes
can be broadened until they encompass all possible convex polyhedra, which
would answer the Open Question.

The first such class to be shown to be unfoldable was the platonic solids,
as shown by Dürer himself (Dür25) (though this was not his goal.) To date,
the following further classes of convex polyhedra have been shown to be un-
foldable: pyramids (BCO04), prisms (DO05), prismoids6 (DO05) and smooth
prismatoids7,8 (BCO04), and domes9 (DO07; BO07).

In (Pin07) Val Pinciu gives an easily intuitive proof of the volcano unfolding
of the 1-ring of a single face on a convex polyhedron, which forms a convex cap. If
the neighborhood N [A] is defined to be the face A and the set of faces sharing an
edge with A on convex polyhedron P then Pinciu defines the volcano unfolding
by cutting all edges of N [A] except the edges which bound A and shows that
all volcano unfoldings are free of overlap. Volcano unfoldings are also defined in
(DO07), although the authors do not provide a formal proof.

Although not stated explicitly, a direct result of Pinciu’s proof is that:

Lemma 1.4 (Pinciu) All four-faced closed convex polyhedra are unfoldable.

Proof. Any three faces of a tetrahedron must each have a unique edge in
common with the four face. If these shared edges are left uncut while all other
edges on the surface are cut, the result is a volcano unfolding and therefore free
of overlap. �

1.4.10 Further useful lemmas

Cauchy A useful result often cited in fields such as linkage problems and robotic
path-planning is Cauchy’s Arm Lemma. Essentially, it states that if the
angle at a vertex of a convex polygon is increased while all but one of its

5see p. 18
6Prismoid : the convex hull of two equiangular convex polygons, oriented so that corre-

sponding edges are parallel (DO05)
7Prismatoid : the convex hull of two convex polygons in parallel planes (BCO04)
8Smooth prismatoid : the convex hull of two C2-continuous convex curves in parallel planes

(BCO04)
9Dome: a convex polyhedron with a distinguished base polygon B and the property that

every nonbase face shares an edge with B (BO07)
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 1.7: Some of the classes of convex polyhedra and polyhedral subsections
which are known to be unfoldable:
(a) The platonic solids (Dür25)
(b,e) Prismoids (DO05)
(c,f) Domes (BO07)
(d,g) Volcano unfoldings for 1-ring convex caps (Pin07)



18 CHAPTER 1. INTRODUCTION

sides are held fixed, then the remaining side must stretch. The lemma, as
quoted by Singer (Sin98, p.110), is:

Lemma 1.5 (Cauchy’s Arm Lemma) Suppose we transform a convex
(spherical or planar) polygon A1A2 . . . An into another convex polygon
A′1A

′
2 . . . A

′
n in such a way that the lengths of the sides AiAi+1 remain un-

changed. If the angles at the vertices A2, A3, . . . , An−1 remain unchanged
or increase, then the length of the remaining side AnA1 must also increase.

The interested reader will find several demonstrations of this lemma in
the letters of Schoenberg and Zaremba in (SZ67).

Steinitz Like the Poincaré formula, Steinitz’ Theorem (Wei99) is one of the
fundamental results in mathematics.

Theorem 1.6 (Steinitz) The one-skeleton of an arbitrary convex poly-
hedron is a planar 3-connected graph [and each planar 3-connected graph
is polyhedral.]

Several different proofs of Steinitz’ theorem have been advanced over the
years, but perhaps the most natural demonstration is also the most hands-
on: one need only shine a light from near one face of of any transparent
convex polyhedron onto a blank wall, to see that the shadows of its edges
form a 3-connected graph. David Eppstein’s Geometry Junkyard (Eps05)
has an excellent ray-tracing of this figure.

Counting spanning trees Read and Tarjan (RT75) provide the following re-
sult on spanning trees:

Lemma 1.7 (Read and Tarjan) A connected graph G = (V,E) has at
least 2t spanning trees, where

t =

⌈
−1 +

√
1 + 8 · (‖E‖ − ‖V ‖+ 1)

2

⌉

Counting sides of faces From the Poincaré formula follows a useful result
on the number of edges of a face of a polyhedron, formulated by Malcolm
Sabin10:

Lemma 1.8 (Sabin) Every closed finite polyhedron of genus 0 must have
at least one face of five or less sides.

Proof. The total number of edges E is equal to half the number of
faces times s, the average number of sides, and also half the number of
vertices times v, the average valency. Thus 2E/s + 2E/v − E = 2 and
2/s + 2/v − 1 > 0. Because a face must have at least 3 sides (and a
vertex at least 3 neighbors), we have separate upper bounds on s and v:
2/s > 1− 2/v ≥ 1− 2/3, so that s < 6. The inequality is strict, the limit
value being achieved only for the unbounded hexagonal grid. Similarly
v < 6. If the average number of sides is less than six there must be at
least one face with five or fewer sides. �

10Personal communications, 2008
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1.5 New Research and Results

The core of this dissertation is separated into four chapters, each of which
addresses a different aspect of the unfolding problem.

Chapters 2 and 3 explore the unfoldability of convex polyhedra; the breadth
of material is such that it has been divided into two parts. Chapter 2 reviews
fundamental conjectures and new negative results, designed to lay the ground-
work for a broader understanding of the issues faced in proving that all convex
polyhedra are unfoldable–or not. Chapter 2 introduces new approaches and re-
cent research directions which have not born fruit, for much can be gleaned from
such negative results. In contrast, Chapter 3 describes three distinct possible
proofs that all convex polyhedra are unfoldable; each proof is presented, with
supporting evidence and (where appropriate) counterexamples; and while none
of the three proofs is as yet conclusive, they provide strong directions for future
research.

Chapter 4 introduces a series of Unfolders, algorithms which try to unfold
surfaces both convex and nonconvex. Often expressed in software, the intent
of these tools is not to always succeed–there are known examples which prove
that they cannot always do so–but rather to make a ‘best effort’: to unfold
surfaces which are unfoldable or to fail gracefully on those which are not and,
most importantly, to do so in reasonable time.

Chapter 5 discusses the coolinoid, a nonconvex surface with particularly
interesting traits. The class of polyhedra known as coolinoids contains surfaces
which are developable and also surfaces which are not; detailed analysis of the
coolinoid, its shape and related developability, yields curious and intriguing
results.

1.5.1 Are all convex polyhedra unfoldable?

There are two sides to the story of convex unfoldability, like players in a game
of chess.

On one side of the board, playing White, is the quest for the proof that all
convex polyhedra are unfoldable, and certainly there are many points support-
ing that argument; but none are conclusive, and so across the board sits the
opponent playing Black, who seeks an ununfoldable convex surface–the coun-
terexample to White’s conjecture.

Arrayed before White are a number of conjectures, though many of the early
sallies are easily disproved. White must wrestle with the fact that even though
every example it produces is unfoldable, there is as yet no proof that every
polyhedron it might ever produce is unfoldable. There are a few ways that
White can approach the proof:

Classification Defining classes of convex polyhedra which can be shown to be
unfoldable, and then eventually showing that all convex polyhedra fit into
one of these classes. This approach has been used extensively in previous
research, such as prismoids and domes.

General proof Attempt to support the core premise directly. This head-on
attack motivates the conjectures of Section 2.2.
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Similarity Applying knowledge from the analog case to the discrete. It is well-
known that every convex polyhedron can be generally unfolded without
overlap; Section 2.3 seeks to leverage this knowledge for edge-unfoldings.

Cut-graph construction Showing that if a cut-graph has certain traits, it
will unfold the polyhedron without overlap; and then showing that such
a cut-graph can be constructed for every input. Convex curves, local
convexity and the alpha-beta rules (Sections 2.5, 2.6 and 3.3) each take
different approaches to this goal.

Reduction Beginning from a polyhedron which is known to be unfoldable,
describe a method to transform the source polyhedron into one whose
unfoldability had not been known previously; if unfoldability is an invari-
ant under the transformation then the descendant’s developability may be
guaranteed. Then, show that the transformation method applies to every
convex polyhedron. This philosophy motivates the Leaf-Node Truncation
theorem of Section 2.4.

Net construction Showing that there exists some algorithm which can always
build an intersection-free net from the faces of any convex polyhedron, and
that this algorithm must always apply to every input; one such candidate
is the Anchorable Convex Hull (Section 2.7).

Error correction An extension to either form of construction is a hybrid of
the two: to build an unfolding with ‘controlled’ amount of overlap and
to then repair its results in a second pass. This method is discussed in
Section 3.4.

The constructive approaches–net or cut-graph construction–are excellent
candidates for expression in software. An algorithm whose complexity makes
correctness difficult to prove can still be strongly supported by experimental
evidence; this very different problem is addressed in Chapter 4.

Meanwhile, Black prepares a very different sort of argument. Black’s goal is
to show that not all convex polyhedra are developable. The easiest way to do so,
of course, would be to present an actual counterexample: some closed, convex,
n-sided surface without a single valid unfolding. Thus far, there are few clear
paths to such a construction. Section 2.8 describes one step in that direction:
polyhedral banding is a method for constructing a convex polyhedron which is
‘less’ unfoldable than others, that is, is demonstrably likely to have fewer total
possible unfoldings than a randomly-generated convex polyhedron of similar
degree. If the ununfoldable counterexample does exist, exploring methods such
as polyhedral banding could provide essential insights into its discovery.

1.5.2 Unfolding algorithms

Beyond mathematical proof for convexity lies another, altogether different sort
of problem: algorithmic solutions for the general case. The two questions are
not unconnected: the perfect unfolding algorithm, which provably could not
fail, would constitute a proof by existence of convex developability.

Chapter 4 explores a suite of unfolding techniques, discussing methods rang-
ing from brute-force and randomized search, through simple heuristic algo-
rithms, to sophisticated curvature-driven parallelized models.
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It is worth noting that Black has a vested personal interest in these algo-
rithms. If Black wishes to claim that some particular polyhedron cannot be
developed without overlap, the burden of proof will be much lighter if an al-
gorithm has been found which can short-cut the enumeration without loss of
information.

1.5.3 Unfolding the coolinoid

In the course of exploring algorithms for unfolding non-convex surfaces, the
author encountered a very interesting special case: the coolinoids. A coolinoid
is a surface of uniformly negative internal angle deficit with two borders. What
is interesting about the coolinoid is, first of all, that it is unfoldable at all;
secondly, that it has the least number of border loops of any surface of uniformly
negative internal angle deficit; and thirdly, that some coolinoids are developable
but others are not, and the border between the two classes follows a subtle and
fascinating form.

The author’s study of coolinoids formed the basis for the paper A Developable
Surface of Uniformly Negative Internal Angle Deficit (Ben07), presented by the
author at Mathematics of Surfaces XII, 2007. The coolinoid is discussed in
detail in Chapter 5.

1.6 Experimental Apparatus

1.6.1 Software

The YAMM software package has been designed as a testbed for unfolding
concepts. Running on Windows operating systems and written in C++, it
models high-polycount surfaces in 3D with OpenGL; it provides a context in
which the user is free to experiment with various implementations of unfolding
algorithms, exploring the effects of different models and methods.

YAMM provides a host of research-oriented features, such as data validation,
dataset repair, real time polygon mesh editing, statistics tracking, automated
Monte-Carlo search, and output to PDF and OFF. The YAMM software is
described in detail in Appendix B and available online.

YAMM has proved absolutely invaluable in the visualization of problems,
in the evaluation of conjectured approaches, and in the discovery of counterex-
amples. A number of the models presented here were designed and assessed
entirely within YAMM.

1.6.2 Datasets

A large number of polyhedral models were collected or constructed in the course
of the work presented here, covering special cases and interesting surfaces both
convex and non-convex. They are listed in Appendix C and available online.
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Chapter 2

Groundwork in Unfolding
Convex Polyhedra

2.1 Introduction

This chapter explores the author’s early work on the question of whether or not
all convex polyhedra are unfoldable. The concepts and insights found here form
essential underpinnings to the material presented in Chapter 3.

In a sense, every result in this chapter is negative; but to dismiss such
results as negligible would be a great mistake. The tree of possible avenues
of research is broad and deep, and each negative result presented here acts to
trim that tree. Every category of cut-graph which is shown not to unfold all
convex polyhedra, every algorithm which fails to generate an overlap-free net,
marks another branch which may be pruned from future research. Furthermore,
each failed avenue often offers up new insights; the Anchorable Convex Hull, for
example, inspires several of the proofs proposed in the next chapter.

This chapter is organized as follows:

• Section 2.2 explores, and rapidly discards, early and näıve conjectures
about the problem. By the end of section 2.2 it should be clear that the
problem is not going to be quickly answered. (By the end of the chapter,
it will be clear that finding an answer may be quite difficult.)

• Section 2.3 answers Fukuda’s conjecture as to whether an unfolding along
shortest-path edge cuts will always be free of overlap.

• Section 2.4 describes the author’s work with Joseph O’Rourke for the
paper Unfolding Polyhedra via Cut-Tree Truncation (BO07), presented to
the Canadian Conference on Computational Geometry 2007. This section
proves the unfoldability of the domes, a class of convex polyhedra.

• Section 2.5 provides a counterexample to the conjecture that any cut-graph
which is an open convex curve must develop without overlap.

• Section 2.6 presents the author’s proof for the locally-convex cut-graph. It
is shown that every convex polyhedron whose 1-skeleton can be spanned
by a locally-convex cut-graph is unfoldable without overlap.

23
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Figure 2.1: A cube and several of its unfoldings

• Section 2.7 introduces the Anchorable Convex Hull (‘ACH’), an iterative
algorithmic proof which attempts to show that a conflict-free partial un-
folding may be extended to a larger partial unfolding without sacrificing
the guarantee that there is no overlap. In doing so the ACH introduces
the idea that a partial unfolding may be held convex, growing outwards
from some central point; this theme is revisited in Chapter 3.

• Section 2.8 explores the construction of banded polyhedra, a demonstrably
‘hard to unfold’ class of polyhedra. Some material in section 2.8 is drawn
from the paper A Class of Convex Polyhedra with Few Edge Unfoldings
(BO08), co-written with Joseph O’Rourke.

2.2 Early Conjectures

2.2.1 The most primitive conjecture: all convex polyhedra

A cube is completely unfoldable: no unfolding of a cube has overlap. From this
one might generalize the conjecture that no unfolding of a convex polyhedron
will ever overlap. (Figure 2.1.)

Conjecture 2.1 Every unfolding of a convex polyhedron will be without over-
lap.

Rebuttal
Many counterexamples have been found of convex polyhedra which possess at
least one overlapping unfolding. In fact, it has been found that as the complexity
(number of faces) of a polyhedron rises, that the odds of a randomly-chosen
cut-graph unfolding the polyhedron rapidly approaches zero; see Section 4.9
and (O’R00, p.3).
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Figure 2.2: A degree-3 truncation of the cube creates a seven-sided figure in
which 100 of the 1,682 possible cut-graphs will unfold to overlap

A common counterexample to the argument of the cube is the truncated
cube (Figure 2.2.) While many of the unfoldings of the truncated cube retain
the cube’s property of non-overlap, there are 100 unfoldings (out of a total of
1682) which self-intersect. All of these illegal unfoldings share the common
attribute that the cut-graph cuts through the two long edges of the truncation
face and leaves the short edge intact.

The example of the truncated cube is a commonly cited model from the
Mathworld online resource. Other, similarly simple and intuitive examples in-
clude Namiki and Fukuda’s slim tetrahedron (Figure 1.5, p. 13) and the trun-
cated tetrahedron, a minimal model found in the course of preparing (BO07)
which demonstrates the same behavior as the truncated cube and does so with
fewer faces. The truncated tetrahedron shown in Figure 2.3 can unfold to
self-intersection, but only in three out of 75 cases. In each of the three self-
intersecting unfoldings, the tetrahedron is cut by a cut-graph which contains
both of the long edges of the truncation face. �

2.2.2 Simplicial convex polyhedra

Given that not all convex polyhedra are always unfoldable and that this has been
demonstrated by counterexamples with non-simplicial faces, one might suppose
that the lesser class of simplicial convex polyhedra are always unfoldable.

Conjecture 2.2 Every unfolding of a simplicial convex polyhedron will be with-
out overlap.

Rebuttal
The slim tetrahedron devised by Namiki and Fukuda (NF94) (Figure 1.5) is
a simplicial (and minimal) counterexample. The model has sixteen distinct
unfoldings, two of which self-intersect.
�
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Figure 2.3: A degree-3 truncation of the tetrahedron creates a five-sided figure
in which three of the 75 cut-graphs will unfold to overlap

2.2.3 ‘Sufficiently smooth’ convex polyhedra

The slim tetrahedron counterexample is distinguished by two vertices of ex-
tremely high angle deficit. It would not be unreasonable to conjecture that
simplicial convex models without such sharp vertices might be always unfold-
able. Figure 2.4 shows a sphere S of such high face count that at every vertex S
is within some ε of being flat. (Note that by increasing the face count, ε may be
made arbitrarily small.) S is shown unfolded without intersection in Figure 2.4.

Conjecture 2.3 Every unfolding of a simplicial convex polyhedron of suffi-
ciently low maximum angle deficit will be without overlap.

Rebuttal

It is clear in examining the unfolding of S shown in Figure 2.4 that even a
simple deviation from the unfolding shown could result in conflict. Selecting an
unfolding at random, a counterexample is found almost trivially; in fact, every
random unfolding of the high-polycount sphere generated in the course of this
research was self-intersecting (Figure 2.5.)

A self-intersecting unfolding may also be constructed deliberately. To induce
conflict, a cut-graph is chosen in which a cut edge ‘curls’ on the surface of the
sphere, deviating sufficiently from a locally-geodesic curve. Figure 2.6 shows a
high-polycount sphere in which cuts in the cut-graph used in Figure 2.4 have
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Figure 2.4: A sphere with low local curvature unfolded without intersection

been interrupted and bent to one side, forced into an L-shaped hook. This
causes an immediate conflict with adjacent geometry.
�
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(a)

(b)

Figure 2.5: (a) A sphere with low local curvature unfolded with random cuts,
demonstrating conflict independent of local curvature; small angle deficits lead
to conflicts several cut edges away. (b) Detail showing the widening ‘chasm’
between two sides of a cut. As the two sides separate, faces intersect and clash.
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(a)

(b)

Figure 2.6: (a) The low-local-curvature sphere, cut to deliberately self-intersect.
(b) Detail of the self-intersection in the unfolding plane.
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Figure 2.7: A sphere edge-unfolded along polyhedral geodesics

2.3 The Discrete Star Unfolding

It is shown in (AAOS90) that for any polyhedron P , given any point x on P
chosen such that there is only one shortest path from x to each vertex of P , the
star unfolding found by cutting P along the geodesics from x to each vertex will
be without overlap.

In light of this, it is reasonable to conjecture that any edge-unfolding which
is ‘close enough’ to a star unfolding will be without overlap. This conjecture
was first postulated by Komei Fukuda in (Fuk97), who asked,

Does a shortest-path spanning tree of a convex polytope induce a
non-selfoverlapping unfolding?

This conjecture is encouraged by the insight that many successful unfoldings,
especially as surfaces become more complex, seem to favor cut-paths which
travel along relatively straight lines. For example, consider Figure 2.7, in which a
sphere is unfolded successfully by cutting along geodesic paths from the topmost
vertex of the sphere to every vertex below with a single edge cut to the bottom-
most vertex.

Efficient construction of the star edge-unfolding

Dijkstra’s Algorithm (Dij59) is an O(n3) method for finding the shortest path
on a graph. However, Dijkstra cannot be applied directly to the task of finding
shortest paths on a polyhedron because the crossing points are not known a
priori. Dijkstra’s algorithm is, by nature, constrained to operate on a graph
whose edges have fixed known weights.

A Steiner point is an extra vertex added to a graph which is not a part of
the initial input.
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Figure 2.8: Progressive reduction of the maximum number of Steiner points
per edge in the approximation of the shortest path on a polyhedron P . The
leftmost sphere shows shortest paths approximated with up to 20 Steiner points
per edge; the rightmost sphere has none.

Figure 2.9: The unfolding of the final stage of P from Figure 2.8.

In (LMS97; ALMS98), Lanthier et al. propose a mechanism for the rapid
approximation of the shortest path on a polyhedron by adding a set of m Steiner
points along each edge. Through some dexterous juggling of constants and the
use of an ε-error constant, they are able to bring the time to find a shortest
path on a polyhedron down to O(mn logmn).

The Steiner points method has inspired the approach presented here for the
construction of an edge unfolding which most closely follows a star unfolding.
A star unfolding is initially calculated by using a high number of Steiner points.
This ‘ideal’ unfolding is then re-created without Steiner points, following only
edges along the shortest paths between vertices. The resulting coarse graph ap-
proximates the star unfolding without cutting faces. Figure 2.8 shows a gradual
reduction (displayed in stages for clarity) from fine to coarse graphs, ending in
a cut-graph which then unfolds to the figure shown in Figure 2.9.
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Fukuda’s conjecture

It has now been demonstrated that an edge-unfolding derived from a star un-
folding can be found which is without overlap. It would then seem reasonable
to ask whether this must always be the case, for all such edge-unfoldings.

Conjecture 2.4 (Fukuda) Any edge-unfolding which follows closely enough
to a general star unfolding will be without conflict.

Rebuttal
Critical to the rebuttal to this conjecture is the notion of ‘follows closely enough’.
The shortest edge-path from one vertex to another may actually be a small
distance from the true shortest path over the surface between the two vertices.
The star unfolding also assumes an unspecified ‘source’ vertex, which (when
seeking a rebuttal) may be chosen with an eye to inducing pathological behavior.

In his 1997 thesis Nets of Polyhedra (Sch97), Wolfram Schlickenrieder de-
scribes the counterexample to Fukuda’s conjecture, found by evaluating a cut-
graph of shortest-path edges on a randomly-generated polyhedron. The author
of this dissertation arrived independently at a similar conclusion, with the fol-
lowing result:

A convex polyhedron P was generated by taking the intersection of 77 infinite
half-planes. Figure 2.10(a) shows a star unfolding of P while 2.10(b) shows the
graph of edges on P which most closely fits the star unfolding. Figure 2.10(c)
shows the unfolding of P according to the chosen cut-graph: there are two
self-intersections. Figure 2.10(d) shows one such intersection in detail.

This demonstrates that not every edge-unfolding which most closely follows
a general star unfolding will be without overlap. �
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(a) (b)

(c) (d)

Figure 2.10: A randomly-generated 77-faced polyhedron showing conflict when
unfolded with a cut-graph which most closely fits a star unfolding. (a) General
unfolding cuts. (b) Best-fit edge paths. (c) Unfolded net, with overlap. (d)
Detail of unfolding overlap.
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2.4 Cut-Tree Truncation

The author presented the paper Unfolding Polyhedra via Cut-Tree Truncation1

(BO07), co-written with Joseph O’Rourke, to the Canadian Conference on Com-
putational Geometry 2007. Cut-tree truncation is a method by which one poly-
hedron may be transformed into another while retaining prior knowledge of the
unfoldability of the polyhedron. For example, if some polyhedron P0 is known
to be unfoldable by some cut-graph T0, cut-tree truncation shows how a new
polyhedron P1 and cut-graph T1 may be derived which are also known to unfold
without overlap. This section discusses the key ideas and theorems of the paper.

2.4.1 Definitions

Two key terms are defined: the empty sector property and the degree-3 leaf
truncation operation.

Empty Sector When a net is unfolded by a cut-graph, the developments of
the edges incident to each leaf of the cut-graph unfold to open into an arc
in the plane (Figure 2.11(a) and (b).) An unfolding has the empty sector
property if no other polygon intrudes into the arc of any leaf-node vertex.

This definition can be generalized to the surface by saying that a surface
P has the empty sector property if there exists any cut-graph T such that
(P, T ) has the empty sector property.

Leaf Truncation Let x be a leaf of the cut-graph T , with y the parent of x
in T . A leaf truncation is the removal by truncation of a vertex x from P
where x is a leaf node of T , yielding P ′ with a new face and T ′ in which x
has been replaced by a tree of depth one of new edges rooted in x’s former
parent (Figure 2.11(c) and (d).)

A degree-3 leaf truncation is the truncation of a trivalent leaf-node vertex
x, yielding P ′ with a new triangular face 4abc, a ∈ xy. In T ′ x has been
replaced with the Y-fork of edges ya, ab and ac.

A degree-3 truncation is the only vertex truncation which can produce a
tree of edges rooted at y; the new cut edges must trace the border of the new
face, dictating that any higher-degree truncation cannot replace x with a tree of
depth one without splitting the newly-added face into several triangles fanning
from a. Therefore Theorem 2.5 is restricted to degree-3 truncations.

1The following passage appears in the Collaboration Statement which accompanies this
dissertation:

The lion’s share of the text was written by Joe, and I produced all figures in the
paper except figures 1, 2, and 8; the models used in figures 3, 4, 9 and 10 are of
my own design. Joe credits me with the insight that led to section 4, ‘Cutting
to achieve degree-k vertices’. Section 5, ‘Empty sector essential’, relies on my
convex cap counterexample. Section 6, ‘Polyhedra achievable by degree-3 leaf
truncation’, was the joint result of extensive discussion by email.

I presented this paper at CCCG2007 and produced all figures and text of the
presentation. As part of the presentation I presented a rewritten version of the
proof of the main theorem and of the proof that all domes are unfoldable, both
updated for clarity.
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Figure 2.11: A cut edge (a) has the empty sector property at vertex x (b).
When x is truncated (c), the cut edges of the new triangle 4abc also retain the
empty sector property (d).

2.4.2 The cut-tree truncation theorem

The linchpin of (BO07) is the proof that degree-3 truncation preserves unfold-
ability. The two key results are the following theorem and its corollary:

Theorem 2.5 (Theorem 1, (BO07)) If a non-overlapping unfolding of a poly-
hedron P via a cut-tree T has the empty sector property, then the cut-tree T ′

produced by a degree-3 leaf truncation (a) unfolds P ′ without overlap, and (b) has
the empty sector property.

The proof of the theorem is an exercise in geometric reasoning. As the
construction of the proof was almost entirely the work of O’Rourke, it will not
be reproduced in this dissertation; in brief, the proof shows that the development
of a, the tip of triangle 4abc, must fall in the plane somewhere within the arc
of rotation between the developments the edge xy. So long as the original arc
between xyR and xyL was empty, it can be known that the matching arc with
endpoints at yR and yL in the new unfolded net is also empty and therefore the
new triangle 4abc develops without overlap.

Corollary 2.6 (Corollary 2, (BO07)) Any polyhedron P derived by repeated
degree-3 leaf truncations from an initial polyhedron P0 and cut-tree T0 with the
empty sector property, unfolds without overlap via the derived cut-tree T .

Figure 2.12 demonstrates Corollary 2.6 in action. By Theorem 2.5 any initial
unfolding (P0,T0) having the empty sector property implicitly defines a broad
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Figure 2.12: The progressive leaf-truncation of a cube to a new developable
convex surface

category of more refined polyhedra which also have the property (and are thus
unfoldable.)

However, it has proved difficult to extend this broad category to cover every
convex polyhedron (which was the original goal.) Leaf truncation can only be
applied to leaves of polyhedra and the theorem requires that every such leaf
be of degree 3; this partially restricts the theorem to polyhedra with trivalent
vertices and partially restricts it as well to those with triangular faces (i.e., faces
which can be achieved through the truncation of a trivalent vertex.) This is not
to oversimplify by saying that the theorem applies only to trivalent simplicial
polyhedra; vertices and faces of degrees other than 3 are still acceptable, so long
as they are not the targets of a truncation operation.

2.4.3 Applications of the theorem

From Corollary 2.6, several further insights are derived:
In Section Three of (BO07), a counterexample is given of of a broad-based

five-sided dome whose apex cannot be leaf-truncated (Figure 2.13.) After the
truncation of the tip of the five-sided pyramid P t, the newly-created pentagonal
face f cannot be glued to any of the new edges without overlap. This demon-
strates conclusively that Theorem 2.5 does not extend beyond the truncation of
trivalent vertices.

Conversely, in Section Four it is demonstrated that an ε-close truncation
can generate a polyhedron with vertices of degree > 3 which has the empty
sector property. Thus if one seeks to prove the developability of non-trivalent
polyhedra, it is at least partially possible to achieve them through truncation.
However, Section Four cautions the reader that the use of an ε does create a
new edge in the face-to-face connectivity graph of P which had not previously
existed and which does not vanish as ε→ 0, but it “should”. Care must thus be
taken that this new length-ε edge never be left uncut; if it were, the two faces
at either side would be attached only by geometry which rapidly converges to a
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(a) (b) (c)

(d) (e)

(f)

Figure 2.13: (a) Pyramid P with five-sided base. (b) The pyramid, unfolded.
(c) The truncated pyramid P t with tip removed. (d), (e), (f) The five possible
attachments of the new pentagonal face f to P t lead to overlap (two symmetric
unfoldings not shown.)

single point, violating the rules of the edge-unfolding.
Section Five gives an example which demonstrates that the empty sector

property is essential. A convex cap is constructed (Figure 2.14) which, when
cut by a specific cut-graph, does not have the empty sector property but is
still unfolded without overlap. A degree-3 leaf-truncation is then applied to one
vertex of the cap and a Y-fork inserted into the cut-graph; the resulting figure
is no longer free of overlap. This figure was originally conceived by the author
as a counterexample to the proof of the smallest ununfoldable polyhedron, which
is discussed in Section 3.2.

Condensed in the printed version of the paper was another counterexample,
of a truncated tetrahedron which demonstrated that the Y-fork defined in the
degree-3 leaf truncation was also essential to the theorem (Figure 2.15.)

2.4.4 Domes

The proof that all domes are unfoldable is then presented:

Theorem 2.7 (Theorem 3, (BO07)) Starting from a pyramid P0 and cut-
tree T0 the star of edges incident to the apex a of P0, the polyhedra achievable
via degree-3 leaf truncation are all domes. And conversely, every dome (except
possibly a wedge) can be realized by a series of degree-3 leaf truncations from
some pyramid P0.
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(a) (b)

(c) (d)

Figure 2.14: Without the empty sector property, degree-3 vertex truncation
cannot guarantee non-overlap. (a) The convex cap counterexample, shown from
above, with cut-graph in red (b) A single vertex in truncated and a Y-fork
introduced (c) The untruncated cap shown in perspective, positioned above its
unfolding (d) The cap after truncation; the unfolded net now self-intersects.



2.4. CUT-TREE TRUNCATION 39

a

c b

(a)

a c

b

(b)

a

c b

(c)

a c

b

(d)

Figure 2.15: Including the edge bc and thus failing to create a Y-fork in the
degree-3 leaf truncation can lead to overlap.

Proof. The proof is given in two parts: from pyramid to dome and from
dome to pyramid. Wedges are excluded as they do not fit the mechanism of the
proof, but the unfoldability of a wedge is straightforward.

Pyramid → Dome Given a pyramid P with base face B, let i index the i-
th truncation of P . The leaf nodes of Ti all lie on Bi. Every degree-3
truncation will intersect Bi and create two new vertices which also lie on
Bi. Thus every face created will have at least two vertices on B ensuring
that Pi is a dome.

Dome → Pyramid Let D be a dome with base face B. There must be at
least one triple of sequential edges a, b, c on B such that the extensions of
a and c cross outside x of B. Extending B and the two faces at a and c
until they meet at x, a new dome D1 with one fewer vertex on its base
face B1 is created. Continuing in this manner will generate a dome Dk

with a triangular base Bk. Clearly Dk must be a tetrahedron.

�
The proof given of Theorem 2.7 is an arguably simpler proof of the unfold-

ability of the domes than that given in (DO07).

2.4.5 Extensions to leaf-node truncation

(BO07) defines the empty sector property in terms of the entire surface, but it
is worth noting that the property is purely local in nature. It would be just as
accurate, and more powerful, to say that individual leaves of the cut-graph can
be said to have the empty sector property.

This has interesting implications for the description of the smallest undevel-
opable polyhedron (section 3.2.)
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Figure 2.16: A spiral cut (λ(v) ≤ π∀v ∈ P , shown in red) on a convex polyhe-
dron with pentagonal base and a rotated, inset pentagonal top

2.5 A Cut-Graph of Convex Curves

Recall from p. 4 that λ(ci) for a vertex ci on a path is the left interior angle of
ci, and that a closed convex curve is defined as a path C = (c0, c1, . . . , cn−1) on
the surface where λ(ci) ≤ π for all i and c0 = cn−1.

O’Rourke and Schevon show in (OS89) that a closed convex curve on a
surface develops without self-intersection, that is, the developments of the left
and right edges of the curve will not cross in the plane. This proof leads naturally
to the supposition that a cut-graph composed solely of convex curves will unfold
the polyhedron without overlap. However, adding the requirement that the
curves be closed could, perhaps, be unnecessarily restrictive. Can the closure
requirement be removed while still retaining a valid unfolding?

Conjecture 2.8 A cut-graph in which λ(v) ≤ π for all v cannot self-intersect.

Rebuttal
Beginning with a carefully-chosen polyhedron P (Figure 2.16,) a simple Hamil-
tonian cut-graph (without branches) is constructed which turns to the left
(λ(v) ≤ π) at every vertex. The path forms a spiral on one side of P , leav-
ing the other side (which consists of a single face) untouched. This cut-graph
unfolds P to self-intersection (Figure 2.17.)
�
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Figure 2.17: Unfolding along the spiral cut leads to overlap

2.6 Local Convexity

This section presents the proof that every convex polyhedron whose 1-skeleton
can be spanned by a locally-convex cut-graph is unfoldable without overlap.
Counterexamples are then given which demonstrate the limits of application of
this technique.

2.6.1 Terminology of local convexity

Local convexity is defined as follows:

• If vertex v is a leaf node of cut-graph T , connected to T through neigh-
boring vertex w, where the first leaf node of T encountered after v in a
clockwise traversal of the edges of the unfolded net is labeled u and the
previous leaf node encountered before v in the counterclockwise traversal
is labeled x, then v is locally convex if ∠(vwL, vx) ≤ π, measured counter-
clockwise in the unfolded plane; and ∠(vwR, vu) ≤ π, measured clockwise
in the unfolded plane.

• If v is not a leaf node of T then v is locally convex if none of the totals
of the incident angles of the faces between the cut edges of v exceed π.
Where v is cut by exactly two edges, this is equivalent to ρ(v) ≤ π and
λ(v) ≤ π, i.e., the vertex lies on a convex curve in both clockwise and
counter-clockwise directions. (Recall from p. 4 that λ(v) and ρ(v) are the
interior angles of v.)

• A cut-graph T is locally convex if every vertex in T is locally convex.

See Figure 2.18. Informally, the definition for a leaf node v states that if the
surface were to be cut by a single new edge from v to x, the leaf node after v
in a counterclockwise traversal of the edges of the unfolded net, and if that new
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Figure 2.18: The sinusoidal projection unfolding of a sphere, showing the vertex
v (circled) and its nearest neighbors which are leaf nodes in the cut-graph, u
(square) and x (hexagon). The path Tv→x is the sequence of non-leaf vertices
visited in the shortest counter-clockwise path from v to x; Tv→u proceeds sim-
ilarly from v to u. Tv→x and Tv→u share a subset of vertices, indicated with
diamonds. When unfolded, Tv→x unfolds to %x→v (note the re-ordering of terms
to preserve direction) and Tv→u unfolds to %v→u. The vertices shared between
Tv→x and Tv→u are distinct in the unfolded paths.
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edge were to be added to the cut-graph, then the disjoint section of geometry
now separated from the surface would develop to a simple convex polygon in
the plane. The same applies for u, the leaf node immediately before v in a
counterclockwise traversal around the edges of the net.

2.6.2 Locally-convex cut-graph

Intuitively, in unfolding a cut, the right and left sides of the cut edges can only
self-intersect if they approach each other. At the leaf of the cut, the second
vertices of the left and right developments diverge by the angle deficit of the
first (leaf) vertex; at all subsequent vertices, the left development can only turn
further to the left, the right can only turn further to the right.

Theorem 2.9 Any convex polyhedron which can be spanned by a locally-convex
cut-graph can be unfolded without overlap.

Proof. Consider u and v, two leaf-nodes of a locally-convex cut-graph T
linked by a single uncut edge (uv /∈ T ) where there is a path Tv→u ∈ T which
follows a clockwise traversal of the border edges of the unfolded net from v to
u. This path contains no other leaf node of T (see Figure 2.18.)

In a clockwise traversal of the edges in the border of the unfolded net, label
the last leaf node of T encountered before v as x and the next leaf node encoun-
tered after u as y. The path x → v → u → y ∈ T contains no other leaf nodes
of T .

This path is now decomposed into its constituent arcs, which are given ex-
plicit direction. Label the right developments of Tx→v, Tv→u and Tu→y as %x→v,
%v→u and %u→y respectively.

The structure of this proof is as follows: first, it will be shown that %v→u
cannot self-intersect. Then it will be shown that there can be no intersection
between %v→u and %x→v, nor between %v→u and %u→y. The operation of col-
lapsing a fork is then introduced, and finally it is shown that %x→v cannot cross
%u→y.

Lemma 2.10 The right development of the path Tv→u has no self-intersection
when T is locally convex.

Proof. By construction the edges of Tv→u are a subset of some closed
convex curve on the surface. Given that a closed convex curve develops without
self-intersection (Lemma 1.3, p. 15) it is clear that a subset of such a curve must
also develop without intersection. �

Lemma 2.11 Given vertices x, v and u on locally-convex cut-graph T as shown
in Figure 2.18, then %v→u, the right development of the path Tv→u, will not
intersect %x→v, the right development of the path Tx→v.

Proof. Refer to subfigure Figure 2.19(a) on page 45.
Having established that %v→u and %x→v are convex in the unfolded plane,

label as Mv the ray which proceeds from v and bisects the line segment wLwR:
Mv is the perpendicular bisector of the right and left developments of w. It is
immediately clear that Mv lies counterclockwise from the edge vwR, which is
tangent to %v→u at v. %v→u is a convex figure and therefore will never cross
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Mv. In like manner the left development of Tv→x will also not cross Mv; the
left development of Tv→x is another label for the right development of Tx→v,
and so the two arcs will never meet. �

However, it remains to be established that %x→v will not cross %u→y. A case
where this is conceivable is shown in Figure 2.19(a), where Mv and Mu actually
cross. Referring again to Figure 2.19, define the operation of collapsing a fork :

Collapsing a fork Consider a fork in the cut-graph, i.e., a vertex w of va-
lence ≥ 3 connected ‘downstream’ to some vertex r and ‘upstream’ to two
branches of T which have exactly one leaf node each (labeled u and v).
It has already been established that %r→v ∩ %v→u and %v→u ∩ %u→r are
empty. Thus without loss of information the vertices u, v and w may be
deleted from T and replaced with w′, the intersection of the edges rLwL

and rRwR, which meet at an angle of AD(w) +AD(v) +AD(u) radians.
All other edges and vertices of the development remain unchanged.

Although none are shown in the figure, if there are any other (non-leaf)
vertices in Tu→w or Tv→w, they are also deleted and their angle deficits added
to the angle between rLwL and rRwR; the proof is otherwise unchanged. It
should also be noted that the symmetry shown in figure 2.19 is shown only for
clarity; the argument does not in any manner depend on symmetry.

One might wonder why the operation described is the collapsing of a fork,
coalescing two leaves into one, instead of collapsing a single sub-branch of the
fork (which would be a simpler operation and thus presumably more robust
for the purposes of the proof.) However, in collapsing a single leaf-node, the
angle incidence of one side of w–in the figure, the left-hand side of w, if v were
collapsed alone–would exceed π. This would violate the requirements of local
convexity; thus two leaves must always be collapsed together.

Lemma 2.12 Given vertices x, v, u and y all leaf nodes of locally-convex cut-
graph T as shown in Figure 2.18, the right development of Tx→v will not inter-
sect the right development of the Tu→y.

Proof. Collapse the fork w/v/u to find w′. The perpendicular bisector
from w′ separates the right development of Tw′→y from the right development
of Tx→w′ , because both paths develop to a convex figure in the plane. �

It has now been shown that the development of a single path between leaves
of a locally-convex tree cannot self-intersect; that the adjacent developments
of two adjacent paths sharing one common end-leaf cannot intersect; and that
given three sequentially-adjacent paths sharing two common leaf nodes that
the middle path can be ‘collapsed’, allowing the proof to proceed on a figure
with one fewer cut-graph branches and showing that the first branch cannot
intersect the third. Therefore any convex polyhedron which can be spanned by
a locally-convex cut-graph can be unfolded by that graph without overlap. �

2.6.3 Local convexity for trivalent polyhedra I

Observe that a trivalent vertex on a convex polyhedron cut at one edge or three
edges will be locally convex. This could only fail to be the case if a face incident
to the vertex had greater than π incident angle, an impossibility on a convex
surface.
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Figure 2.19: A fork is trimmed without disturbing the surrounding edges, show-
ing that a branch of T may be collapsed without loss. Lines w′rL and w′rR meet
at an angle of AD(w) +AD(v) +AD(u).
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Figure 2.20: The one-skeleton of a cube is spanned by a trivalent graph but no
spanning of the trivalent graph is a strictly binary tree. Here red edges (sides,
back) are edges in the cut-graph and black edges (top front, bottom) are not.
Green nodes show trivalent or monovalent corners, red nodes show bivalence.

A strictly binary tree is a connected acyclic graph of monovalent and trivalent
vertices. (The term ‘strictly’ is used because it is a common convention in
computer science to conside trees which have bivalent roots but are otherwise
mono- or trivalent to be binary trees.) If it were to be shown that every trivalent
convex polyhedron is spanned by a strictly binary tree then by Theorem 2.9
every trivalent convex polyhedron would be unfoldable.

By Steinitz (see Lemma 1.6, p. 18), a trivalent convex polyhedron P is
spanned by a planar 3-connected graph G.

By the definition of a 3-connected graph, there exists a binary tree T , a
subset of G, which spans P .

A binary tree has nodes of only degree one or three. Therefore every vertex
of P is locally convex under T .

Then by Theorem 2.9 it would appear that T unfolds P without overlap.

Conjecture 2.13 A strictly binary tree exists for every trivalent convex poly-
hedron.

Rebuttal
The assertion, “there exists a binary tree which spans [a planar 3-connected
graph]” is incorrect, for it fails to account for loops in the graph. The vertices
of a cube cannot be spanned by a strictly binary tree (i.e., a loop-free graph
with all vertices precisely monovalent or trivalent) (Figure 2.20.) �
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(a) (b)

Figure 2.21: (a) A trivalent vertex which must be separated into triplets to
preserve the conditions of local convexity (b) If two trivalent vertices have two
1-ring neighbors in common, local convexity would require that the four edges
with shared endpoints be cut, creating an illegal loop in the cut-graph

2.6.4 Local convexity for the general case

Conjecture 2.14 A locally-convex cut-graph can be constructed on any convex
polyhedron.

Rebuttal
A counterexample to the conjecture can be constructed.

If a vertex has three incident edges meeting at 2π/3 (Figure 2.21(a)) then
all three edges must be cut to generate a convex tree; leaving any edge uncut
would give an incident angle of 4π/3, which would exceed the convexity limit
of π. Placing two such figures side-by-side (Figure 2.21(b)) and cutting all
three edges at each vertex would cause a loop to be formed in the cut-graph,
separating two triangles from the rest of the unfolding. �

2.6.5 Local convexity for trivalent polyhedra II

Conjecture 2.15 A locally-convex tree exists for every trivalent convex poly-
hedron.

Rebuttal
The cube supports no binary tree but it does still support locally-convex cut-
graphs. (For examples, see Figure 2.1.) A slightly larger counterexample shows
that not every trivalent convex surface has a 1-skeleton which can be spanned
by a locally-convex cut-graph: the regular dodecahedron (Figure 2.22). The
dodecahedron is trivalent and unfoldable with twelve sides and twenty vertices.
The face angle of every face of the regular dodecahedron is 3

5π > π/2. Every
vertex must therefore be monovalent or trivalent on the cut-graph; a bivalent
vertex would have a local turn angle of 6

5π.
This dictates that the cut-graph must be a strictly binary tree, but the

vertices of the dodecahedron cannot be spanned by a strictly binary tree (Figure
2.22(c).) �
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(a) (b)

(c)

Figure 2.22: A dodecahedron, shown folded (a), unfolded (b), and in hyperbolic
projection (c) to show the one-skeleton, with red bivalent vertices demonstrating
the failure to construct a strictly binary tree. It is impossible to construct a
locally-convex cut-graph on a dodecahedron.
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2.6.6 The domes as a class of locally-convex polyhedra

Corollary 2.16 Any convex polyhedron whose one-skeleton can be spanned by
an acyclic tree which is monovalent or trivalent at all trivalent vertices of the
polyhedron and locally convex at all multivalent vertices, can be unfolded without
overlap.

This demonstrates again the unfoldability of the domes.

Proof. This is a natural result of Theorem 2.9 and the observation, given
above, that a trivalent vertex on a convex polyhedron cut at one edge or three
edges will be locally convex. Trivalence is not required for local convexity; it
suffices that the incident face angles to a vertex cut by multiple edges never add
to greater than π between two cuts.

The domes are defined by construction to have one multivalent apex vertex
a with every other vertex on the dome trivalent. The construction of a dome
by truncation ensures that vertices are always created in pairs and every pair
of vertices is adjacent to a higher trivalent vertex or a. Therefore the dome can
be spanned by a tree which is strictly binary at every vertex except at a and
which cuts every edge incident to a. Therefore all domes are unfoldable. �

2.6.7 O’Rourke’s counterexample

Joseph O’Rourke has proposed a counterexample2 to Theorem 2.9. The coun-
terexample exploits an almost-flat vertex (a vertex with ε positive curvature)
to create geometry which is effectively locally concave while still following the
rules of local convexity. The model is shown above its (conflicted) unfolding in
Figure 2.23(a); the unfolded net is shown alone in Figure 2.23(b). Figure 2.23(c)
shows the net repaired, answering the question, “is this surface unfoldable at
all?”; the answer is an easy yes.

Figure 2.23(d) shows the counterexample with each vertex painted to show
local convexity. Green arcs show up to π incident radians between critical edges
at each vertex; red arcs trace intervals which break the local convexity rules.
Examining every vertex of the counterexample it is clear that the cut-graph is
locally convex at every non-leaf vertex. However the top front vertex is not
locally convex: it is a leaf node which does not comply with the leaf node rule
that if the paths from the node to its first CW and CCW leaf neighbors were
to be cut that the resulting polygon would be convex. As such the proposed
counterexample does not actually meet the requirements of a locally convex
cut-graph.

2Personal communications, 2007
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(a)

(b) (c) (d)

Figure 2.23: (a) O’Rourke’s original counterexample to the Local Convexity
Theorem (slightly modified for convexity): the cut-graph given appears to be
locally convex, but the unfolding self-intersects. (b) An alternate unfolded net,
free of overlap. (c) The overlap is fixed by a single edge-swap. (d) The proposed
counterexample rendered with local convexity highlighting. Green arcs show
vertices which are locally convex; red arcs show vertices which are not. Note
the vertex at the front of the top face, a leaf-node which fails its local convexity
test because the edge joining it to its first leaf-node counterclockwise neighbor
is not on the convex hull of the set of cut-graph edges which link them.
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(a) (b)

(c) (d)

Figure 2.24: The O’Rourke counterexample, edited: the edge between the non-
locally-convex leaf-node and its neighbor has been cut to highlight the inap-
plicability of the counterexample. (a) The section which being detached from
the main unfolding is shaded light green. (b) The (clearly nonconvex) isolated
region. (c), (d) The model as given contains extraneous faces and may be simpli-
fied to a thirteen-faced convex cap. The simplified model is useful in analysis in
that it has fewer extraneous (non-overlapped) unfoldings: it has 26,418 possible
nets, of which 23,586 have no self-intersection (90.30%.)
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2.7 The Anchorable Convex Hull

This section presents steps toward an iterative proof, in which an unfolding is
assembled face-by-face in a partial ordering which generates a series of stable
states each of which can then provably be advanced to the next stable stage.
This approach is motivated by the observation that many unfolding methods
produce unfoldings which often show clear concentric rings in their layout; con-
sider the unfolding of a sphere shown in Figure 2.25. A series of rings centered
on the heart of the unfolding shows that concentric rings of faces are generated
during development.

The ideas first seen here are not carried to a complete proof. Instead they
inspire directions of further research, which are explored in Chapter 3.

Recall that a valid partial unfolding is a connected unfolded subset of the
faces of a polyhedron which is known not to self-intersect (p.11.)

Conjecture 2.17 There exists a set of rules by which a valid partial unfolding
may be extended while preserving its developability.

Supporting Arguments
The goal will be to describe precisely a particular form of valid partial unfold-
ing, a subset of the polyhedron whose convex hull in the unfolding plane would
have certain ‘desirable’ traits. This well-behaved subset could then be evolved
through a series of face-gluing operations into the next larger well-behaved sub-
set, preserving those same attributes. This approach depends on finding a nested
series of convex hulls within the unfolding. Each such hull is the unfolding of
a closed convex curve, i.e., a curve C where c0 = cn−1 and λ(ci) ≤ π∀ci ∈ C
(see p. 4.) (This should not be confused with the locally convex tree discussed
in Section 2.6, where both λ(ci) and ρ(ci) ≤ π.)

Define an Anchorable Convex Hull (“ACH”) (Figure 2.25) as a convex planar
polygon with the following traits:

• The Anchorable Convex Hull is the planar convex hull of a valid partial
unfolding of the polyhedron.

• Certain edges of the Anchorable Convex Hull are anchorages (Figure
2.25(a).) An anchorage is an edge of the ACH defined by a single face
within the partial unfolding where that face lies with an edge against
the convex hull. Informally, an anchorage is where another face could be
‘glued’ to the outside of the ACH. For every anchorage there is exactly
one face in the polyhedron which could be glued to that anchorage.

• Each anchorage shares a vertex in the original polyhedron with the next
and previous anchorages (where ‘next’ and ‘previous’ refer to ‘the anchor-
age encountered next/previously when visiting edges around the Hull in a
clockwise ordering) and the path of anchorage edges forms a single loop on
the polyhedron. The connected path of anchorages forms a closed convex
curve on the surface.

• After unfolding, neighboring anchorages may lie some distance apart in the
plane, separated spatially and also separated in the Hull by one or more
non-anchorage edges. Those edges of the ACH which are not anchorages
are called fens (Figure 2.25(a), (b).) As an unfolding blossoms outwards
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(a)

(b) (c)

Figure 2.25: (a) An Anchorable Convex Hull showing anchorages and fens for the
partial unfolding of a parametrically-generated sphere (b) The finished unfolding
is now entirely fens (c) Unfolding of a sphere modeled with marching cubes
shows irregular polygonalization, leading to an Anchorable Convex Hull mixing
anchorages and fens with multiple fens lying adjacent along some stretches of
the hull.
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Task
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  FA FB
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(b)

Figure 2.26: (a) Adding a face creates a task (b) If the two new faces do not
share an edge then a gap is created

from its center, the unfolded faces will crack along cut edges and spread
apart. Each such crack ends in a fen edge of the Anchorable Convex
Hull. Each fen edge caps the opening of a unique branch of the growing
cut-graph. Multiple fens may lie between anchorages (Figure 2.25(c).)

• There is no face in the polyhedron which is not inside the ACH which
shares an edge with any face within the ACH that is not an anchorage
edge. Every face which can be glued to the ACH at any internal edge,
must already be so glued.

If the unfolding is not yet complete then each branch of the growing cut-
graph remains distinct and bounded by a fen. If the partial unfolding contains
every face of the polyhedron–that is to say, if it is actually a full unfolding–
then the union of the set of all edges bounded by each fen with the set of all
anchorages is the complete cut-graph.

By construction, the angle between any two adjacent anchorages is at most
π. This is reminiscent of the construction of the locally-convex cut-graph (Sec-
tion 2.6,) which depended on a similar design, but on the Anchorable Convex
Hull it applies to the uncut edges of the unfolding and travels across cuts instead
of along them.

The angle between two anchorages A and B which share a common endpoint
v on the polyhedron but which are separated by one or more fens in the unfolding
is exactly the sum of the incident angles of the faces at v which lie within the
Hull, minus the total angle deficit of each branch of the cut-graph bounded by
each intervening fen. A and B can only be separated by fens, never by another
anchorage, for that would imply an intervening edge on the original polyhedron
and the anchorages are defined as a connected path.

The angle between two anchorages A and B which lie immediately adjacent
on the Hull, sharing some common vertex v, is exactly the sum of the incident
angles of the faces incident to v which lie within the Hull on the polyhedron.
The Hull is known by construction to be convex, therefore the total incident
angle within the hull at v is ≤ π. (Were it more than π, v would be concave.)

2.7.1 Anchorable Convex Hull - walkthrough

A listing of the algorithm of the Anchorable Convex Hull can be found in
Algorithm 1, p. 55.
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Algorithm 1: The Anchorable Convex Hull

1: H ←< A,F > is an Anchorable Convex Hull of P
2: A← the set of anchorages in H
3: F ← the set of fens in H
4: Tasks← ∅ will be a list of Tasks, sorted by distance in number of edges

from H, closest edge first
5: a← the first anchorage in A
6: Glue(fa, a)
7:

8: Glue(f, a)
9: H ′ ← H ∪ fa

10: A′ ← A− a
11: for each edge e of fa do
12: if e /∈ A′ then
13: Insert e into Tasks, preserving ordering
14: end if
15: end for
16: while Tasks 6= ∅ do
17: t← Pop(Tasks)
18: Find ae, the next open anchorage beyond t
19: Glue(fat

, at)
20: end while

The heart of the construction of an Anchorable Convex Hull is the act of
‘gluing’ one or more faces to the Hull until the resulting figure is once again
compliant with the rules above. In the assembly of an ACH two construction
operations are used:

• Tasks form the core of an advancing-front algorithm for ACH construction
(Figure 2.26(a).)

• Gaps may form between Tasks, inducing more complex goals which will
require special resolution (Figure 2.26(b).)

The algorithm begins with a valid Anchorable Convex Hull: any face of the
polyhedron. Each face of a convex polyhedron must itself be convex, yielding
a viable initial convex hull which happens to have no fens. (That said, a cur-
sory inspection of real surfaces makes it clear that some faces are much more
amenable to being the heart of a series of rings than others. The careful choice
of seed face is worthy of further research.)

By construction, all anchorages lie on a convex hull. This guarantees that
the operation of gluing a face to an anchorage does not introduce a conflict
in the unfolding. In fact, the ACH construction ensures that faces could be
glued to every anchorage on the ACH and none of them would conflict, with
each other or with any face within the ACH. Consider two anchorages A and B
which meet on the polyhedron at a shared vertex v and two faces FA and FB
to be ‘glued’ to A and B respectively. Noting that FA and FB must both be
incident to v:
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• Where A and B unfold to lie adjacent in the Hull, the sum of the incident
angles of the faces meeting at v in the plane can at most equal the sum
of the incident angles of the faces meeting at v on the polyhedron; given
that AD(V ) ≥ 0, there can be no intersection between FA and FB . The
two faces are separated by at least AD(V ) radians of arc.

• Where A and B unfold to positions on the Hull which are separated by
one or more fens, recall that the lines containing the line segments A and
B meet in the plane at an angle which is the sum of the incident angles
of the faces incident to v, minus the total angle deficit of the cut-graph
branches bounded by each of the intervening fens. The angle of encounter
plus the face angles of FA and FB can thus never exceed 2π. Therefore
FA and FB cannot cross.

Thus the unfoldings of FA and FB can never overlap.
By construction any Anchorable Convex Hull contains a valid unfolding. It

remains only to be shown that there exists a set of rules which can always evolve
one ACH into another ACH; that will prove that an ACH can be constructed for
the complete unfolding of any convex surface, thereby showing that any suitable
surface can be unfolded.

Consider the addition of a single face to an anchorage. This will create one
of three scenarios (up to symmetry):

1.
The anchorage edge is replaced by two new anchorages. No new tasks
are created. The result is a new valid ACH, guaranteed to contain no
conflicts.

2.
One edge of the new triangle lies on the outline of the convex hull but
the other edge lies within it. The anchorage edge is replaced by one
new anchorage and one new task. The task’s goal will be to fill in the
gap created to one side of the anchorage; counter-clockwise in the upper
illustration, clockwise in the lower.

3.
The opposing vertex of the new triangle extends the convex hull but nei-
ther opposing edge of the triangle lies on the convex hull. The anchorage
edge is replaced by two new tasks. The goal of each task will be to fill in
the gaps to either side of the former anchorage.

This introduces the concept of a ‘task’ (Figure 2.26(a).) A task is a job
which must be completed through a series of gluing operations which will yield
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a new, valid ACH. A task is created when a face is glued to the unfolded net
which extends the convex hull but adds an internal edge, within the bounds of
the ACH and not on its border, to which another face which has not yet been
glued on might be added which would fall within, or across, the border of the
ACH. Such a gap must be repaired before the figure can once again be called
an ACH.

Tasks are oriented. A given task seeks to fill a gap in the convex hull in
either the clockwise (CW) or counter-clockwise (CCW) directions.

Consider a pair of neighboring anchorages A and B in an Anchorable Convex
Hull, where A lies clockwise from B. Examine the case where gluing a face FA
to A has lifted the convex hull beyond the edge B, creating a CCW task to be
resolved (Figure 2.26(a).)

It is known that the anchorage B is free; FB can safely be glued to B without
fear of introducing a conflict. The three possible scenarios hold once more and
the new face could create a new CCW task. If FB creates no new task then this
task is done; if FB creates a new CCW task, it can be resolved recursively.

It is possible that the CW edge of FB is not the CCW edge of FA, even
though they share the common vertex v (Figure 2.26(b).) If so then a ‘gap’ has
been introduced in the border of the convex hull. A gap is a space along the
ACH between two filled anchorages. Gaps are a new kind of task.

Recursive resolution of a task can be seen informally as a task ‘traveling’
around the outer edge of the convex hull. At each new anchorage, the task
either terminates or carries on; perhaps leaving gaps in its wake. As a task
is propagated around the hull, it will always be able to advance because it is
known that the hull’s anchorages are waiting, until the task has wrapped around
the convex hull and approaches itself from the other side. As the task reaches
itself from the other side of the ring, it becomes a gap.

Each gap must now be filled across some vertex v with the fan of faces
which lie between FB and FA and which have v as one corner. This operation is
guaranteed to not induce conflicts, because v has positive angle deficit. It will
suffice to ensure that the new figure complies with the other rules of the ACH.

Although the algorithm described above is illustrated with triangular faces,
it extends easily to nonsimplicial polygons. As each face is glued to its anchorage
and its edges are evaluated to (potentially) become tasks, each edge is processed
independently, beginning with the two edges closest to the anchorage and ending
with the furthest edge. By design, each edge can lead to one or more tasks which
will ‘fill in’ the ACH up to the level of the next edge in the face.

Figure 2.27 shows two examples of convex polyhedra which are well-suited
to unfolding by the rules of the Anchorable Convex Hull. A sphere generated
by marching cubes is circumscribed by a closed convex curve at the boundary
plane of every cube (Figure 2.27(a)) and a convex polyhedron parametrically
generated from a bivariate field will have as many closed convex curves along
one axis as its model has resolution on that axis (Figure 2.27(b).)
Rebuttal
Unfortunately, it is difficult to prove that the face fan at v conforms to the rules
of the Anchorable Convex Hull. Gaps can develop into ‘complex gaps’, in which
multiple faces fill a gap, perhaps crossing the boundary of the ACH, perhaps
embedded within it (Figure 2.28(a).)

This problem of resolving a gap is much more difficult than the problem of
resolving a task. With tasks the ACH guaranteed certain preconditions which
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(a) (b)

(c) (d)

(e) (f)

Figure 2.27: (a) A triangulated implicit-surface sphere with the three unique
locally-convex geodesic loops highlighted. (b) A parametrically-generated
sphere computed from an n×m grid showing n vertical locally-convex geodesic
loops and one horizontal loop at the m/2 ring. (c) The implicit sphere with
added rings showing concentric closed convex curves. The concentric rings show
six suitable starting points for the Anchorable Convex Hull algorithm. (d) The
parametric sphere with concentric closed convex curves. Note that in contrast to
the implicit sphere, here only one axis and two suitable starting points are con-
centric. (e) The ACH unfolding of the implicit sphere. (f) The ACH unfolding
of the parametric sphere.



2.7. THE ANCHORABLE CONVEX HULL 59

  B A

FAFB

(a) (b)

Figure 2.28: (a) A gap whose internal faces will be difficult to fit to the rules of
the ACH (b) Most random polyhedra have no closed convex curve larger than
a few faces.

ensured resolution. When attempting to resolve gaps there seem to be no known
conditions which guarantee that a gap will be ‘well behaved’, i.e., resolvable by
a recursive division of its component triangles. While not a rebuttal to the
conjecture per se, this difficulty in the algorithm has been the primary reason
that exploration of the Anchorable Convex Hull has not been carried further.

The stronger rebuttal to the conjecture that the ACH rules can extend any
partial unfolding is that the rules would seem to have very limited applicability
in the general case. A randomly-generated polyhedron has very few closed
convex curves larger than two faces, which diminishes the general applicability
of the Anchorable Convex Hull method dramatically (Figure 2.28(b).) Other
common counterexamples, such as the icosahedron and the class of banded
polyhedra (see Section 2.8) also do not contain closed convex curves. �

2.7.2 Insights from the Anchorable Convex Hull

The Anchorable Convex Hull would seem to show that any convex surface which
contains multiple nested closed convex curves is always unfoldable. The proof
has not been made with mathematical rigor, as too many counterexamples are
known to which this method cannot apply and the author felt that other avenues
of exploration would bear more fruit. To characterize the class of polyhedra to
which these rules apply may be quite difficult.

Still, there is potential in this method, and the ideas first developed here
appear again in the author’s later research. The vertex ordering which is implicit
in the ACH is made explicit in the alpha-beta rules (Section 3.3.) The concentric
layout of the net of an ACH unfolding is very similar to that of a Least Height
Unfolder (Section 4.5.3.) While the Anchorable Convex Hull may be unduly
limited in application or extent, it has served as an excellent incubation space
from which valuable ideas have emerged.
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(a) (b) (c) (d)

Figure 2.29: Each of these models is a counterexample to a particular unfolder
or conjecture.

2.8 Polyhedral Banding: Building Counterex-
amples

Several local counterexamples have been found in the quest to prove that all con-
vex polyhedra are developable. Each counterexample is a surface, often paired
with a particular cut-graph, which contradicts a specific scenario or presents
a surface to which a specific method cannot apply. This is not to say that
these surfaces are not developable: every surface so described can be developed,
but not by every method known. A few of these counterexamples, shown in
Figure 2.29, include:

• A random convex polyhedron, which will often defeat many schemes which
implicitly exploit regularity, such as the Anchorable Convex Hull (Sec-
tion 2.7), and a few that would seem not to, such as the discrete Star
Unfolding (Section 2.3)

• The dodecahedron, which cannot be unfolded to a locally-convex cut-
graph, putting it beyond the purview of Local Convexity (Section 2.6) or
Cut-Tree Truncation (Section 2.4)

• The spiral-cut that does not encircle the model, which showed that fixing
λ(p) ≤ π could turn a cut-graph too far inwards upon itself and thereby
defeated the Open Convex Curves conjecture (Section 2.5)

• The convex cap, which demonstrates that a trivalent vertex cannot al-
ways be truncated while preserving unfoldability, another rebuttal to the
applicability of Cut-Tree Truncation (Section 2.4, p. 38)

Random convex polyhedra and the dodecahedron are, in a sense, only symp-
tomatic; they serve as counterexamples to methods, not to particular cases, and
many other methods exist which can unfold them. The second two examples
are more interesting: here are particular models which, when cut a particular
way, cannot be unfolded. In short, it is possible to devise a polyhedron which
cannot be cut in certain combinations; can one be constructed which cannot be
cut at all?
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2.8.1 Polyhedral banding

In (O’R07), Joseph O’Rourke introduced a polyhedral surface which was in-
tended as a counterexample to the conjecture put forth in (ADL+04) that all
prismatoids could be ‘band-unfolded’, that is, unfolded by opening the strip of
faces between top and bottom of the prismatoid into a single connected band.
The construction of O’Rourke’s counterexample inspires a new technique for
the construction of polyhedra which are demonstrably ‘difficult to unfold’: con-
vex polyhedra for which it can be shown a priori that a non-zero fraction of
cut-graphs must unfold the polyhedra to overlap.

The method used to construct these ‘difficult to unfold’ polyhedra is called
polyhedral banding. Banding modifies a source polyhedron P0 by replacing tri-
angular faces with harder-to-unfold hex assemblies which, when unfolded into
the plane, take up more space than the original triangle. An algorithm for the
construction of a banded polyhedron is given in Algorithm 2 on page 64.

O’Rourke’s original polyhedral banding model is shown in Figure 2.30. It
is a closed convex polyhedron with eight sides: one smaller hexagon on top,
six quadrilaterals and one larger hexagon on the base. The model shares the
interesting trait with all polyhedrally banded models, that if all but one of the
edges of the base hexagon (uiui+1) are cut and only one of the edges from the
base hexagon to the inner hexagon (uiwi) is cut then overlap is inevitable. In
fact, 27.80% of the possible unfoldings of O’Rourke’s polyhedron self-intersect.

If O’Rourke’s banded surface is converted to a convex cap by deleting the
base hexagon, the percentage of unfoldings with overlap for a single isolated
‘hex assembly’ climbs to 47.81%.

The unfoldings of the hex assembly occupy a region in the unfolded plane
with larger surface area (that is, their convex hull has larger area) than the
triangle which the hex assembly replaced, because there are gaps between the
cut edges. This raises an intriguing possibility: what would happen if several
of these caps were placed closely together? Could they be assembled in such
a manner that their unfoldings were forced to overlap, making self-intersection
inevitable in every unfolding?

The construction is shown for a tetrahedron in Figure 2.31, a banded sur-
face with 28 faces to the original tetrahedron’s four. Interestingly, the banded
tetrahedron turns out to be a counterexample to the Least Height Unfolder (Sec-
tion 4.5.3), an unfolding algorithm which had performed exceptionally well when
tested against randomly-generated convex polyhedra. That said, the banded
tetrahedron is still unfoldable. The overlap-free development shown in the fig-
ure was computed using the Collision Repair algorithm (Section 3.4.)

As an example in support of the claim that banded polyhedra are more ‘dif-
ficult’ to unfold, the probability of a randomly-generated simplicial polyhedron
with 25 to 30 faces being unfolded by a single randomly-generated spanning tree
of the faces is approximately 85.53% (determined by Monte-Carlo simulation.)
In contrast the probability of a randomly-generated spanning of the 28 faces of
the banded tetrahedron unfolding without overlap is approximately 9.12%.

2.8.2 The polyhedral banding algorithm

The author’s algorithm for construction of a banded surface is given in Al-
gorithm 2 (see also Figure 2.30(a).) The design of the algorithm is as follows:



62 CHAPTER 2. PRELIMINARY RESULTS

u u =v0        0
5

u =v4        2

w

w

w

w w w

u3

1

0

2

3

5
6

u =v

u1

2        1

(a)

(b) (c)

(d) (e)

Figure 2.30: (a) O’Rourke’s counterexample to the conjecture that all prisma-
toids can be unfolded by opening the strip of faces between top and bottom into
a single connected band (ADL+04). There is no position of the top face which
does not clash with the band faces (b, d) unless the band is cut more than once
(c, e). The model uses the banding technique to reduce the number of possible
unfoldings.



2.8. POLYHEDRAL BANDING 63

(a) (b) (c)

Figure 2.31: (a) The banding technique applied to the triangular faces of the
tetrahedron. This surface is a strong counterexample for the Least Height Un-
folder (Section 4.5.3,) which unfolds to overlap as shown in (b) but the surface
is still unfoldable; roughly 12.42% of its unfoldings do not self-intersect (per-
centage found by Monte-Carlo simulation.) The overlap-free unfolding shown
in (c) was found using the Collision Repair algorithm (Section 3.4.)

A new vertex u2i+1 is calculated from the midpoint of every edge u2i →
u2i+2. The new vertex lies somewhere between the exact midpoint of the edge
and the intersection of the projection of the midpoint onto the sphere whose
radius is the average radius of the vertices of the adjacent faces. The precise
position of the new vertex between these two choices is set by the constant
dentEpsilon, which specifies how far out the ‘denting’ of each edge goes, mea-
sured from zero (no dent, radius is radius of the midpoint of the edge) to one
(dent out to the same radius as the radii of the endpoints of the edge).

At each new vertex u2i+1 a tangent plane is calculated from the average of
the normals of the faces to either side of the original edge. The convexity of P0

ensures that these tangent planes will do not intersect the polyhedron.
For each face f in P0, the normal to f is intersected with the tangent planes

associated with each of the edges of f . Again, all such intercepts must lie
outside the polyhedron. The closest such intercept point is labeled as the tip of
the virtual pyramid to construct upon face f . The tip is then lowered a fraction
toward the center of the new face, by the constant tipDescent. tipDescent
determines how far down the tip of the pyramid is depressed below its maximum,
chosen from zero (tip is exactly at the lowest intersection of the tangent planes,
i.e., new quadrilaterals on either side of the original edges will be coplanar) to
one (tip is embedded in the plane of the out-dented vertices, i.e., a degenerate
pyramid).

Having now computed a shallow virtual pyramid above every face, with twice
as many edges around the pyramid as the original face, the pyramid is truncated
to generate the quadrilaterals and inset hexagon. (Or octagon, or appropriate
2n−gon for an original face with n sides.) Truncation is by the ‘slice plane’, a
plane with normal equal to the normal of the face and passing through a point
positioned at the constant fraction slice between the center of the new face and
the pyramid’s tip. The constant value slice is chosen from zero (cut at the
height of the out-dented vertices) to one (cut at the tip of the virtual pyramid,
i.e., do nothing).

The output from each face of P0 is one new 2n−gon and 2n quadrilaterals.
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Algorithm 2: Polyhedral Banding

1: P0 ← a convex polyhedron, vertices ordered counterclockwise by face
2: P1 ← the output, a banded convex polyhedron
3: C ← the center of P0

4: Define constants: dentEpsilon← 0.1; tipDescent← 0.5; slice← 0.12
5: for all Face f ∈ P0 do
6: N ← the normal of f
7: R← the ray from the center of f with direction N
8: lenA ← (

∑i=n−1
i=0 ‖v − C‖)/n

9: for all vi ∈ f do
10: mid← (vi + vi+1)/2
11: lenB ← ‖mid− C‖
12: u2i ← vi
13: u2i+1 ← (lenB+dentEpsilon∗(lenA−lenB))∗((mid−C)/lenB)+C
14: fi ← the face neighbor to f at edge vivi+1

15: pi ← the plane passing through u2i+1 with normal the average of
the normals of f and fi

16: tipi ← R ∩ pi
17: end for
18: cf ← (

∑i=n−1
i=0 u2i+1)/n

19: tip← tipk closest to cf
20: subtip← cf + tipDescent ∗ (tip− cf )
21: cutpoint← subtip+ slice ∗ (subtip− cf )
22: p← the plane through cutpoint with normal N
23: for all vi ∈ f do
24: Let r2i be the ray from u2i toward subtip
25: Let r2i+1 be the ray from u2i+1 toward subtip
26: Let w2i ← p ∩ r2i

27: Let w2i+1 ← p ∩ r2i+1

28: Add two new quadrilaterals to P1 with vertices [u2i, u2i+1, w2i+1,
w2i] and [u2i+1, u2i+2, w2i+2, w2i+1]

29: end for
30: Add a new face to P1 with vertices [w0, w1, . . . , w2n−1]
31: end for
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The 2n−gon is clearly planar, because its border is the set of edge-intercepts
between the virtual pyramid and the slice plane. The quadrilaterals are also
planar, because each quadrilateral is the truncation by the slice plane of the
virtual triangle 4 u2i, u2i+1, subtip or 4 u2i+1, u2i+2, subtip.

The output polyhedron P1 is guaranteed to remain convex, because the
virtual pyramids with tips at subtip were all chosen to be shallower, by the
fraction tipDescent, than the nearest intersections of the tangent planes to the
surface above the face.

Note that the values for dentEpsilon, tipDescent and slice reflect an as-
sumption that P0 is of roughly unit radius; these values were found through
experiment to produce useful results on the particular test cases chosen. The
interested reader may wish to explore alternative constants, as these are quite
specific to the original test data (primarily unit-radius tetrahedra and icosahe-
dra.)

2.8.3 A class of convex polyhedra with few edge unfold-
ings

The short note A Class of Convex Polyhedra with Few Edge Unfoldings3(BO08)
builds on the idea of polyhedral banding to define the banded geodesic spheres,
a class of polyhedra which are provably ‘difficult’ to unfold. These polyhedra
are constructed by the recursive subdivision, to some level L, of an icosahedron,
and then polyhedrally-banding the geodesic approximation of a sphere that
results. Figures 2.32 and 2.33 show the first levels of banded geodesic sphere,
L = 0, 1, 2, 3.

(BO08, p.6) introduces the concept of hexagon overlap, in which a hex as-
sembly on a surface has been unfolded to intersection between its component
faces. If the faces of the hex assembly are still a locally-connected net after cut-
ting (that is to say, if there is no face in the hex assembly such that the only path
to the disconnected face from the central hex is through polygons not belong-
ing to the hex assembly) then the circumstances in which overlap is guaranteed
to occur may be clearly delineated. Referring once again to Figure 2.30(a), in
which the vertices wi are the border of the inner hexagon and the vertices ui
border the outer perimeter of the hex assembly, the minimal conditions that
lead to hexagon overlap are: exactly one edge wiwi+1 is not cut, and exactly
one edge uiwi is cut.

Given that there are six edges wiwi+1 and six edges uiwi in a hex assembly,
it is deduced that there are 62 possible nets of the faces of the hex assembly

3The following passage appears in the Collaboration Statement which accompanies this
dissertation:

Joe and I put this paper together when we found that we’d both been working
on his banded counterexample and had each produced a banded icosahedron in-
dependently. The paper was built on an earlier short note that Joe had written;
my contribution begins at page 5, where I wrote software to build the banded
subdivided icosahedra models and to test their unfoldability. I found their de-
velopments (page 7) and performed all of the testing and computation discussed
in section 6, ‘Empirical data’. Joe and I both agreed that his numerical esti-
mates (section 5, ‘Proof’) were significantly less accurate than my testing and
simulation data.
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which are now guaranteed to introduce overlap. It must be emphasized that
this is a lower bound, as a single assembly has 320 possible nets.

The paper then addresses two issues: to extend this result to a mathemat-
ically provable lower bound on the percentage of overlapping unfoldings of a
polyhedrally-banded surface, and to find a statistical lower bound. The two
results diverge, which is to be expected.

The mathematical lower bound on the percentage of overlapping un-
foldings

The lower bound found through mathematical reasoning is constructed as fol-
lows4:

It is known that 62 possible nets of a locally-connected hex assembly will
contain overlap. (No statement is made about the remaining 284.)

If a hex assembly is ‘embedded’ within a hexagonal tiling structure of 16
surrounding banded hexagons, it can be shown that the odds of the central hex
assembly remaining locally-connected after cutting are at least 1/2228. The
particular structure of the tiling, with sixteen faces per tile, was chosen to
simplify the computation of this fraction. This is an extremely loose lower
bound on the probability that the hex face will be a leaf node in the unfolded
net of the hexagonal tiling structure. (For details on how this number was
found, the reader is referred to O’Rourke’s text in the paper.) With this loose
bound, the probability p that a hex assembly will be both locally-connected and
unfolded to hexagon overlap has a lower bound of 62/2228 ≈ 10−67.

Let H = 20 ·4L be the number of hexagons in the polyhedron P constructed
by recursively subdividing the twenty faces of an icosahedron L times to create
a geodesic approximation to a sphere and then banding every triangle in the
geodesic sphere. At most 1 − p of the cut-graph patterns possible for each
hexagon embedded in a sixteen-hex tiling cluster avoids overlap. There are
bH/16c such clusters, and so the fraction of cut-graphs that simultaneously
avoid overlap in all clusters is (1− p)bH/16c.

Finally, as L→∞, H →∞, and the overlap-avoiding fraction of all
unfoldings goes to 0 while the overlap fraction goes to 1. This is the
main claim of the note. (BO08, p.10)

The statistical lower bound on the percentage of overlapping unfold-
ings

The proof above establishes a very loose bound, because overlap can occur for a
number of reasons but the computations given address only a single cause. The
looseness of the argument is dramatically revealed through empirical testing.

Given the number of faces involved (140 for an L = 0 banded geodesic sphere)
an exhaustive evaluation of every possible unfolding of the banded polyhedra
was infeasible. Instead, a Monte-Carlo style search was performed: millions of
cut-graphs were generated at random for L = 0 and evaluated for overlap. Of
the 5.5 million cut-graphs tested using the YAMM software (see Appendix B),
only 11 cut-graphs unfolded the level-0 banded icosahedron without overlap.

4This portion of the material, presented on pages 7 through 9 of the paper, is primarily
the work of Joseph O’Rourke, and thus is only summarized here
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Figure 2.32: Banded geodesic spheres from (BO08), L = 0, 1, 2, 3.

That gives a ratio of 2× 10−6 or 99.9998% overlap, i.e., overlap is almost never
avoided; a stark contrast to the roughly 10−67% rate of overlap predicted above.

This observed overlap rate of 99.9998% may be explained by the observation
that, in the random unfoldings generated on the banded icosahedron, roughly
70% of the cut-graphs unfolded the seven faces of at least one hex assembly
into a locally-connected net. This fraction is surprisingly stable; evaluations for
higher L seemed to indicate that for increasing L the fraction would approach a
value in the neighborhood of 69.75%, although this was not tested extensively.
Given that the emprically-observed rate of overlap of a single hex assembly is
roughly 50%, as mentioned above, one would expect roughly the fraction

1− (1− 0.7 · 0.5)H

of all unfoldings to overlap. For L = 0, H = 20, this formula evaluates to
99.97%, which is significantly closer to the observed fraction of 99.9998%. This
also suggests that local overlap within hex assemblies is responsible for the
majority of all overlaps in the banded geodesic sphere unfolding.



68 CHAPTER 2. PRELIMINARY RESULTS

Figure 2.33: Edge-unfoldings of the first four levels of banded geodesic sphere
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2.9 Conclusions

This chapter has established the following:
While cut-graphs have been demonstrated for convex polyhedra, simplicial

convex polyhedra, and even ‘very smooth’ simplicial convex polyhedra which
create overlap, it is still the case that every convex polyhedron found to date
has at least one overlap-free unfolding.

Several classes of cut-graph have been defined which do not unfold every
convex surface without overlap:

• Fukuda’s conjecture that an unfolding along shortest edge-paths must be
free from self-intersection has been shown to be false.

• The author’s conjecture that an unfolding along an open convex curve
must be free from self-intersection has been shown to be false.

In contrast, it has been shown that any locally-convex cut-graph will unfold
a surface without overlap. However, it has been demonstrated that this class
of cut-graph cannot apply to many convex polyhedra. While there is still room
for exploration in this avenue, it is already quite limited.

Certain classes of polyhedra can be shown to be unfoldable through leaf
truncation, such as the domes. The full class of all surfaces which may be
constructed through leaf truncation has not been precisely described, although it
has been shown to contain every polyhedron whose one-skeleton can be spanned
by a tree which is strictly monovalent or trivalent at all but one vertex. It has
been established that vertex truncation is too limited to apply to general convex
polyhedra.

The Anchorable Convex Hull, an algorithmic proof for building nets without
overlap, has been described. The ACH has been shown to be too limited in
application for most surfaces, but it has inspired ideas which are re-visited
elsewhere.

Polyhedral banding, a new method for building ‘hard to unfold’ convex poly-
hedra, has been discussed.
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Chapter 3

Three Potential Proofs that
All Convex Polyhedra are
Unfoldable

3.1 Introduction

This chapter presents three conjectures: three potential proofs of the unfold-
ability of convex polyhedra. Each proof is incomplete, and in a very real sense
this chapter is a ‘to do’ list of future research. While none of these approaches
is conclusive, each represents a significant step forward and is highly deserving
of ongoing investigation.

The proofs presented here come from three very different schools of thought:

• Section 3.2 explores what would be necessary for a ‘classical’ proof of
convex unfoldability. A proof is proposed in a style similar to Euclid’s
proof that there is no largest prime number: to show that there is no
smallest undevelopable convex polyhedron.

• Section 3.3 presents the alpha-beta rules, an algorithm and partial proof
which demonstrate that it should always be possible to construct a cut-
graph which can unfold a convex surface without self-intersection.

• Section 3.4 presents a partial proof that any cut-graph which unfolds a
surface to overlap may be repaired by eliminating collisions, in a manner
which is guaranteed to introduce no new collisions in regions which have
already been repaired.

Each of these three proofs has great potential, but they also have weak-
nesses. Were these flaws to be resolved, any one of these proofs could be the
demonstration that all convex polyhedra are unfoldable.

3.2 The Lower Bound of Undevelopable

One interesting approach to the proof of convex unfoldability is to model a
proof in the style of Euclid’s argument that there is an infinite number of prime

71



72 CHAPTER 3. THREE CONJECTURES

numbers1. Euclid’s proof is quite simple: he shows that a conjectured coun-
terexample cannot exist within some finite chosen range, regardless of how the
range is chosen. A similar approach may be taken in the unfolding problem if a
suitable range (such as the number of sides of the polyhedron) and target (such
as a polyhedron for which every possible unfolding contains overlap) are chosen.

The argument proposed is as follows:

Begin from the assumption that it is not true that all convex poly-
hedra are unfoldable: assume that there is some finite convex poly-
hedron (and therefore, in all probability, an infinite class of polyhe-
dra) which has no self-intersection-free unfolding. If this were the
case, there would necessarily be some polyhedron which had the
least number of faces of all of the conjectured undevelopable poly-
hedra. Such a polyhedron would have at least five sides because, by
Lemma 1.4, all tetrahedra are unfoldable.

Let P0 be the smallest undevelopable polyhedron, a polyhedron with
no non-overlapping unfoldings having the least number of faces of
all such undevelopable polyhedra.

For any triangular face4abc on P0 there must exist some polyhedron
P1 with a trivalent vertex V where if V were truncated in a certain
way, the resulting face would be 4abc and the resulting polyhedron
would be P0.

P1 is unfoldable. This is known, because P0 has one more face
than P1 and by definition, anything with fewer faces than P0 can be
unfolded.

When a trivalent vertex is truncated, the resulting triangle can be
glued in the unfolding to any of its three new edges and will always
fit in at least one of them. Therefore the truncation of V will not
introduce conflict. Since it was known that P1 was unfoldable, this
would imply that P0 was unfoldable, a contradiction.

Therefore P0 has no triangular face.

Similar arguments could then be made for four-sided and five-sided faces.
Coupled with Lemma 1.8 (p. 18) which showed that all closed convex polyhedra
have at least one face with at most five edges, this would show that the smallest
undevelopable polyhedron could not exist, and thus establish that all convex
polyhedra were unfoldable.

In order to execute the proof, it is first necessary to establish the condition
for three-sided faces. This conjecture may be phrased formally as:

Conjecture 3.1 The smallest undevelopable polyhedron has no triangular faces.

Rebuttal
The proposed proof of the conjecture has two shortcomings: the less serious is

1Euclid’s argument for the infinitude of primes, as restated by Ribenboim in (Rib95, p.3),
is as follows:

Suppose that P1 = 2 < P2 = 3 < . . . < Pr are all of the primes. Let P ′ =
P1P2 . . . Pr + 1 and let P be a prime dividing P ′; then P can not be any of P1,
P2, . . ., Pr, otherwise P would divide the difference P ′ − P1P2...Pr = 1, which
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(a) Convergent (b) Divergent (c) Parallel

Figure 3.1: A triangular face can only be achieved through the truncation of a
single vertex if the edges which lead to the proposed vertex converge at a point
‘beyond’ the face (outside the polyhedron.)

the presumption of ‘truncatability’, while the more serious is the assumption
that gluing will always succeed.

This argument assumes that every triangular face can be achieved by trunca-
tion. This is not necessarily the case. Consider Figure 3.1: if the edges incident
to 4abc converge at the point V outside the polyhedron then V can be trun-
cated to yield 4abc (Figure 3.1(a).) However in case (b) the edges converge to
a point which lies ‘below’ the truncated face, on the wrong side of the plane
that contains the face; in case (c) the projections are parallel and will never
converge.

The greater flaw in the argument, however, is the assumption that after a
truncation the resulting triangle can always be glued to one of the new trun-
cation edges. This is disproved with the convex cap counterexample, shown in
Figure 3.2, which was used to similar ends in (BO07), discussed on page 38.
This counterexample merits further exploration.

Consider the surface P1 shown in Figure 3.2(a). P1 has been designed to
unfold under the chosen cut-graph T (marked in red) so that it does not have
the empty sector property (Section 2.4) as shown in Figure 3.2(d). When the
highlighted vertex is truncated (Figure 3.2(b)) to produce a new triangular face
(Figure 3.2(c)) without otherwise changing T , the new face f (highlighted in
blue) has no place to unfold: as shown in Figure 3.2(e–g), there is no edge where
the new face can be glued without overlap.

This example shows that the assumption that ‘after a truncation, the result-
ing triangle can always be attached without overlap’ is false.

This invalidates the structure of the proof of the conjecture, although it
does not prove or disprove the original premise. The conjecture remains an
open question. �

is impossible. So this prime P is still another prime, and P1, P2, . . ., Pr would
not be all of the primes.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3.2: (a) The convex cap counterexample P1, known to be unfoldable by
the cut-graph shown in red (b) A single vertex of P1 is truncated and replaced
with a new face f (c) The resulting P0 with f ; f is shown limned in blue (d)
The overlap-free unfolding of P1, which does not have the empty sector property
(see Section 2.4) (e–g) The overlapped unfoldings of P0: f overlaps an adjacent
face at each of its three possible anchoring edges
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3.2.1 Cut-tree truncation and the smallest undevelopable
polyhedron

It is interesting to conjugate the previous conjecture with the empty sector
property. Consider the example given above: though the truncated vertex was
a leaf-node of the graph, it did not have the empty sector property. If it had,
then by Theorem 2.5 there would have been no overlap.

This shows that

Lemma 3.2 If there exists a smallest ununfoldable polyhedron P0 and P0 has
triangular faces, then every possible polyhedron and cut-graph (P1, T ) which can
be leaf-truncated to produce P0 must lack the empty sector property at the vertex
of truncation.

Proof. Let P0 be the smallest ununfoldable polyhedron.
Assume that P0 has triangular faces. Label one such face 4abc.
Let P abc1 be the particular polyhedron whose vertex v must be truncated to

generate P0 with face 4abc.2
By assumption on P0, P abc1 is developable. The only difference between P abc1

and P0 is the removal of v and its replacement with abc, so the location in the
plane of every unfolded face in P abc1 will be the same in the unfolding of P0.
This means that any conflict (and its is known that there is a conflict) must
come from 4abc.

Furthermore, this is a conflict which will appear for every possible valid cut-
graph of P abc1 , because if there existed a single cut-graph which could unfold
P abc1 in such a way that the truncation of v → 4abc produced no overlap then
P0 would be unfoldable.

Thus if P0 is the smallest ununfoldable polyhedron and P0 has triangular
face4abc achieved by truncating the vertex v from the smaller polyhedron P abc1 ,
then the vertex v does not have the empty sector property under every possible
cut-graph which unfolds P abc1 . �

It is somewhat difficult to categorize this result. It does not eliminate the
possibility that there is an undevelopable polyhedron with triangular faces, and
in this sense it is quite weak; and yet, it places an almost absurdly stringent
requirement on the conjectured surface, one which would seem intuitively to be
almost impossible to meet, and in this sense the lemma is surprisingly strong.

3.3 Angular Restrictions to Ensure Developa-
bility

In (Luc06, p.54), Brendan Lucier illustrates the angular requirements for 2-local
overlap, the simplest possible form of self-intersection in the unfolding of a con-
vex polyhedron. Lucier shows that if a branch of the cut-graph ‘curls’ too much
upon itself then overlap becomes possible. Lucier’s goal was to demonstrate
how to create overlap, but it becomes interesting to turn the argument around

2Note the assumption that there exists exactly one such Pxxx
1 for each triangular face

4xxx in P0. This is not an accurate assumption, for the reasons detailed above in the first
objection to the conjecture (that is to say, Pxxx

1 may not exist at all) but this inaccuracy is
immaterial to the substance of the discussion, and will be disregarded.



76 CHAPTER 3. THREE CONJECTURES
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Figure 3.3: Unfolding the branch Φ. The angle between PLQL and PRQR is
αQ. The lesser of the angles from V ′P to each of the developments of PQ is βQ.

and ask: is there an upper bound on how sharply a cut-graph branch can turn,
below which there is no risk of self-intersection?

This section presents an extension of the so-called ‘Alpha-Beta Rules’, a set
of lemmas originally presented to the Sixth International Conference on Curves
and Surfaces, Avignon 2006 as Angular Restrictions to Ensure Developability
(Ben06). The original work was, unfortunately, done before the author became
aware of Lucier’s research, and in their original form the alpha-beta rules were
strictly limited by the particular geometry of the surface to unfold. The material
presented in this section represents a step beyond those restrictions.

At Avignon, the alpha-beta rules were described as being, “designed to show
that it is possible to ‘grow’ a cut-graph from the outermost leaves inwards to
form a complete, spanning tree guaranteed by its incremental assembly to unfold
without overlap.”. Strictly speaking, this was a misleading summary: there is
no ‘time’ in cut-graphs, thus no growth. A more accurate description of the
intent of the alpha-beta rules would have been to say that they are designed to
provide a partial ordering of the vertices of the polyhedron, established by a set
of sequential choices, such that any unfolding which follows this ordering will
be free of overlap.

This section presents the building blocks of a proof. The proof is not com-
plete, and the work which remains to be done is detailed before the end of the
section.

3.3.1 Terminology

Given the nature of the task, much of the following discussion will revolve around
some partially-formed cut-graph and the task of selecting which vertex to add
to it next. It will be assumed that the leaves of the cut-graph are ‘fixed’ and
that each new node to discover will be a step away from the leaves of the graph
and toward the root; the reader might picture a set of streams, emerging from
sources around the slopes of a valley and gradually merging together into larger
rivers. Thus for any subset of the cut-graph, there will be a single vertex which
marks the current ‘river mouth’, with the path downstream as yet unknown.
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As the phrase ‘subset of the cut-graph’ is cumbersome to wield, the shorter
term cut-path will be used here to describe any connected subset of some cut-
graph T which is to be discovered on a convex polyhedron. In the original
publication of (Ben06) a cut-path was limited to being a connected and Hamil-
tonian path, but that restriction is lifted here. A cut-path may contain multiple
leaf nodes of T . All leaf nodes of a cut-path are treated as fixed, and each
cut-path has a single vertex which is the tip of the cut-graph. The tip is the
node the furthest from the leaf nodes; all growth of a cut-path, and union with
other cut-paths, occurs at the tip. In this section, the cut-path currently being
discussed will be labeled ‘Φ’ and its tip will be labeled ‘P ’ (Figure 3.3.)

Let αP be the sum of the angle deficits of the vertices of Φ, up to but
not including the angle deficit of P . Recall that the angle between the two
developments of any edge is exactly the sum of the angle deficits of all cuts
which lead to that edge, and that the total angle deficit of any surface of genus
zero is 4π. αP is not defined if P is a leaf node of Φ (that is, if Φ consists of a
single vertex.)

Let the transverse line of P be defined as the line which passes through the
points PL and PR.

The goal will be to find a new vertex Q to add to Φ beyond P , ‘downstream’
of P . The intent is that the developments of edge PQ should not cross each
other, nor cross the developments of any other edge upstream in Φ.

Let βQ be the turn angle between the cut-path and the developments of PQ.
To speak of the ‘turn angle’ from what could easily be a tree with many leaves
is quite imprecise, and so a new concept is introduced to refine the definition of
β: the virtual root.

Note: In each of the following lemmas, it is assumed that αP is less than π.
The case where π ≤ α ≤ 4π is discussed below.

3.3.2 The virtual root

When unfolded, P will develop to two distinct points in the plane, PL and PR.
These points define a virtual root, V ′P , an idea first encountered as ‘collapsing a
fork’ in the discussion of locally-convex cut graphs in Section 2.6 . V ′P is defined
to be the point3 in the plane which lies on the perpendicular bisector of PLPR

to the right of the ray PL → PR at a distance d from PL and PR chosen such
that the angle between the line segments V ′PP

L and V ′PP
R is exactly αP .

Given V ′P , for any vertex Q which is being considered for addition to Φ
beyond P , βQ is defined to be the lesser of the two angles βLQ = ∠V ′PP

LQL

(measured counterclockwise) and βRQ = ∠V ′PP
RQR (measured clockwise.) Note

that βQ is always positive.
In many developments of an edge, one edge will ‘turn away’ further than

the other. Formally, if βLQ is less than βRQ then the inner development of PQ

3

Calculating V ′
P :

VP’

PR

PL

αP/2 M

D

x y

M = (PL + PR)/2
y = ‖PL − PR‖/2
D = ((PL − PR)× [0, 1, 0])/y
x = (y/2) cot(αP /2)

V ′
P = M + xD
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Figure 3.4: If βQ > π−αP

2 then there can be no conflict between the left and
right developments of PQ. (a) βQ ≥ π

2 (b) π−αP

2 < βQ < π
2

is PLQL and the outer development of PQ is PRQR; and vice-versa, if the
comparison of the angles is reversed. The inner development of PQ may be
denoted by P IQI .

Let Γ be the circle of radius d centered on V ′P , passing through PL and PR.

3.3.3 Preventing overlap within each pair of unfolded edges

Lemma 3.3 (Alpha-Beta Rule 1) Given a cut-path Φ with tip vertex P , vir-
tual root V ′P , and a potential extension vertex Q to be considered for addition
to the cut-path beyond P , if βQ > π−αP

2 then it is impossible for PLQL and
PRQR to intersect.

Proof.
Lemmas One and Four of (Ben06, p.3) gave a detailed mathematical proof

that if βQ ≥ π−αP

2 then PLQL and PRQR cannot cross; the arguments pre-
sented in the paper hold just as well for V ′P as for V . The proof given was
difficult to interpret and so a more geometric argument is offered here.

Case (a) — βQ ≥ π
2 :

Consider Figure 3.4(a). If αP = 0 then the two developments would be
coincident, but on a convex surface αP > 0. As αP increases, the distance
from PL to PR must increase by the length of the chord of arclength αP on
Γ; simultaneously, Cauchy’s Arm Lemma (p. 18) dictates that as the angle αP
grows, the distance from QR to QL must increase. Thus (up to αP < π) the
two developments can never cross.

Case (b) — π−αP

2 < βQ < π
2 :

If βQ < π
2 then the edge PLQL intersects Γ at some point C (Figure 3.4(b).)

The triangle 4PLCV ′P is an isosceles triangle with angles βQ, βQ, π − 2βQ.
The angle of the triangle at V ′P , between the lines V ′PP

L and V ′PP
R, is

αP . The angle deficit of P itself does not factor into the angle between the
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developments leading up to P .
If αP > π − 2βQ then PR must lie outside the triangle 4PLCV ′P , in which

case the triangle 4PRDV ′P does not overlap 4PLCV ′P at any point other than
V ′P .

Therefore if βQ > π−αP

2 then PLQL and PRQR cannot intersect. �

Corollary 3.4 Given a cut-path Φ with tip P and potential extension vertex
Q, the angular restrictions to avoid overlap between the developments of PQ
apply only to the inner development, which has the lesser turn angle in the
plane. The remaining development may turn freely: AD(P ) is irrelevant to the
potential overlap of the developments of the edge PQ.

Proof. βQ is defined to be the minimum of the turn angles of the left and
right developments, measured counterclockwise and clockwise respectively; label
these two angles as βLQ and βRQ. Lemma 3.3 guarantees that if min(βLQ, β

R
Q) >

(π−α)/2 then there is no risk of overlap between the developments of this edge,
leaving max(βLQ, β

R
Q)–which determines the position of the outer development–

unconstrained. �

Corollary 3.5 Given a cut-path Φ with tip P and potential extension vertex
Q, if βQ > π−αP

2 then the developments of PQ will not cross the ‘upstream’
developments incident to PL and PR.

Proof. Recall that it has been assumed that αP < π, placing V ′P to the
right of the ray PL → PR. By the same token, the two edge-developments
leading to PL and PR must also lie to the right of PL → PR. The proper
choice of Q must either place the developments of PQ to the left of PL → PR,
or to the right of PL → PR but outside the line segment PLPR. Thus there
can be no intersection between the developments of PQ and the other two
developments incident to PL and PR. �

3.3.4 Extending a cut-path

Having shown that there are broad angular constraints within which an edge
can be cut without risk of overlap, it can now be shown that an edge which
meets these constraints must always exist:

Lemma 3.6 Given a cut-path Φ ending in tip vertex P , there must exist at
least one vertex Q such that βQ > π−αP

2 for the edge PQ.

Proof.
Consider Figure 3.3, in which the transverse line through PLPR divides

the plane in two; call the side containing V ′P the ‘upstream’ side, opposite the
‘downstream’ side. Recall that the angle between any two developed edges which
share a common developed vertex is the sum of the face angles between them.

Then if there were no edges in the downstream half of the plane (Figure 3.5)
it would imply that two edges met at PL or PR with no edge of the polyhedron
between them but also with more than π radians of incident face angle. This
would mean that the face shared by the two edges had > π incident angle at
a vertex, which is impossible on a convex polyhedron. No face of a convex
polyhedron may itself fail to be convex.
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PL PR

>π

Figure 3.5: There must exist at least one vertex with π/2 ≤ β < 3π/2; for this
not to be the case would imply that a face incident to P was nonconvex.

If there is an edge in the downstream half of the plane, β for that edge would
be between π/2 and 3π/2. Even if α were zero, this would still be sufficient to
guarantee that there is no overlap in cutting that edge. �

3.3.5 Preventing overlap between an edge and previous
edges on the cut-path

Lemma Two of (Ben06, p.4) proved that, under certain stringent conditions,
each new edge added to a cut-path would not cross any development of an edge
already in the cut-path. Unfortunately, those conditions were too strict: the
lemma required that (a) Φ was Hamiltonian and thus had exactly one root,
labelled V ; and (b) that that root was coincident with the virtual root V ′P .

Thus far, Lemmas 3.3 and 3.6 and the associated corollaries have shown
that if Q is chosen to have βQ > π−αP

2 , then PQ will cross neither itself nor
its immediate predecessor in the cut-path, and that there must always exist at
least one Q which fits the bill.

However, the restriction on β is not sufficient to guarantee that there will
be no overlap with prior edges in the cut-path. This is because the restriction
on β is strictly local; to avoid overlap there must also be a global factor guiding
the choice of edge. Inspired by the design of the Anchorable Convex Hull, what
is needed is some central anchoring point or face.

The center of the unfolding, C, is an arbitrarily-chosen point, somewhere
within the border of the net, which will determine a focal direction for the
unfolding. The center of the unfolding may be chosen from the development
of any point on the polyhedral surface. In the software implementation of the
alpha-beta rules in YAMM, the author has chosen to use the center of the
development of the lowest face in the polyhedron, but any point which falls
within the first developed polygon will do.

Lemma 3.7 (Alpha-Beta Rule 2) Let Φ be a cut-path with tip P , where ev-
ery edge already in Φ has been chosen according to the constraint presented in
this lemma. Let Q be a potential extension vertex to Φ, and label the inner
development of PQ (be it the left or right development) as P IQI . Let C be the
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C

PR

QR

PL

QL

(a) (b)

Figure 3.6: (a) Each development from P → Q is bounded by concentric rings
around V (left-hand developments are shown on red dotted lines, right-hand on
blue dashed lines) (b) Concentric rings around the center of the radially-oriented
unfolding of the shallow truncated octahedral pyramid

center of the unfolding, a point within the development of the root face of the
unfolding. Then, if Q is chosen such that

• βQ > π−αP

2

• Q maximizes the value of the dot product CP I

‖CP I‖ ·
P IQI

‖P IQI‖ above any other
vertex in the 1-ring of P

• The dot product is greater than zero

then the left-hand development of PQ will not cross any left-development of any
edge already in Φ, and the right-hand developments likewise will not cross.

Proof. Each new vertex added to Φ will be chosen such that the vector from
the inner development of P to the associated development of Q is a vector which
points, as nearly as possible, directly away from the center. It has already been
established that at least one Q must exist; this is a criterion for distinguishing
between multiple valid options, should they be available.

The inner development of each new vertex added to Φ will always fall at
a greater distance from C than its predecessor if CP I

‖CP I‖ ·
P IQI

‖P IQI‖ > 0 (Fig-
ure 3.6(a).) If each new vertex develops to progressively further radii from C
then they can never cross a preceding edge. �

By the same logic as that used in Lemma 3.6, there must always be at least
one Q which would travel away from C, although it is less clear that such a Q
would also comply with the rules on β.
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(a) Step zero (b) Step one (c) Step two (d) Step eight

Figure 3.7: Four steps in the discovery of a cut-path on a banded icosahedron.
The red dot marks the root face.

3.3.6 Cut-paths and partial unfoldings

Before proceeding, further discussion of what it means to ‘cut an edge’ is war-
ranted. In the scenarios discussed here, the developed edges of a cut are often
treated as simple joined line segments in the plane; but the reader must recall
that they are in reality the outer edge of a polygon which has been unfolded in
its entirety. To cut an edge is to partially determine the relative positions of the
faces nearby, which can be exploited when developing a surface. This insight
has interesting implications.

For example, consider a leaf-node of the cut-graph. Because only one edge
incident to the leaf-node is cut, the fan of faces around the vertex are locked
together; their relative placement is fixed and immutable.

Likewise, consider a vertex cut by two incident edges. The two arcs of faces
separated by the cuts are still bound together within themselves; the positions
of all the faces to the left of the cut are fixed relative to each other, and likewise
for the right.

Recall from p. 11 that a partial unfolding U is a connected subset of the
unfolded faces of a polyhedron. Each cut-path Φ defines a unique partial un-
folding UΦ: UΦ is the unfolded net of faces which are incident to a vertex in Φ.
The edges of Φ are a subset of the perimeter edges of UΦ.

To find the partial unfolding UΦ determined by a cut-path Φ, the partial
unfolding is constructed iteratively. Begin with any face f0 incident to any
vertex V0 which is a leaf-node of Φ. Develop f0 into the plane; this will be
the root face of UΦ. Thereafter, for every face f which is developed, for each
undeveloped face g which is adjacent to f across a shared edge e /∈ Φ where g
is incident to a vertex of f which is also a node of Φ, develop g by gluing its
image to the development of e.

This process is illustrated in Figure 3.7, which shows several early steps in
the discovery of cut-paths to unfold a banded icosahedron. Faces are added as
each new vertex is expanded; in time, the separate cut-paths will merge together
to form a single complete cut-graph.



3.3. THE ALPHA-BETA RULES 83

3.3.7 Vertex ordering and interdependency

The lemmas presented thus far have focused on the extension of a single cut-
path from a single tip. However, such focus may be misleading, because vertices
are not extended in isolation. Consider: to choose the best outbound edge to
cut from a given vertex P , α and β must be calculated. To find α requires prior
knowledge of every edge which will be cut up to P in the cut-path. Thus the
expansion of P is dependent on the prior expansion of every other vertex in the
cut-path before P .

For example, what would it mean to cut an edge from P to Q if Q has already
been expanded? Doing so changes the value of αQ at Q by adding new incident
cut edges. This in turn could mean that some new edge which had previously not
met the constraints on βQ is now a candidate for expansion, perhaps pointing
more directly away from the center. Then Q’s expansion must be recomputed,
which could mean re-expanding every vertex past Q in the cut-path.

The solution is two-fold: sort vertices by increasing distance from the chosen
center point, and support a limited amount of backtracking.

Sorting vertices for expansion

The goal in sorting vertices by distance is to minimize–or, if possible, eliminate–
the number of occasions where a vertex is expanded by cutting to a vertex which
has already been expanded. As every expansion will point away from the center
according to Lemma 3.3, it makes sense to first choose vertices nearest to the
center. Assume that the unfolding has begun at the lowest face of the polyhedron
F0 and that the center point C of the unfolding has been chosen to be the center
of the development of F0. There are then several sorting options available:

1. Sort vertices lexicographically with height as the primary axis.

2. Sort vertices by geodesic distance from the center of F0, breaking ties with
lexicographic order.

3. Sort vertices by chord-length inside the polyhedron (linear distance in
space)

4. Sort vertices by the minimum of the radii of the developments of each
vertex

5. Sort vertices by the maximum of the radii of the developments of each
vertex

After fairly extensive experimental trial and error, the author has chosen
option (5) for the YAMM software, scoring each vertex by the maximum of the
radii of all of its developments and then sorting all vertices by increasing score,
developing the lowest-scored vertex first. It was found that this method yielded
the lowest error rate.

To implement this sorting method, the vertices of the polyhedron cannot
be scored ahead of time: the radii to which a given vertex develops depend
completely on the developments of prior edges on the cut-path. However, this
is acceptable: with each step of the algorithm, only the nearest unexpanded
vertex needs to be identified, and there will always be unexpanded vertices on
the outside border of the partially-unfolded net until the net is complete.
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Figure 3.8: Three sequential frames from the unfolding of a banded icosahedron
by the alpha-beta rules. In the course of expanding vertex x from frame (a)
to frame (b), several faces are unfolded to the plane which break the β rule at
vertex y. y has not yet been developed; if it had, the edge xy would already
have been cut, and the expansion of x could not have restored it. From frame
(b) to frame (c), y is expanded and the error is automatically rectified: the edge
xy is now part of the cut-graph.

Limited backtracking

Experiment has verified that although sorting method (5) minimizes the average
incidence of cuts ending at already-expanded vertices more effectively than any
of the other options, it does not eliminate it. This is demonstrated in Figure 3.8,
where a partial unfolding grows into–and then out of–self-intersection while
following the alpha-beta rules.

In Figure 3.8(a) the vertex x is about to be expanded. The best outbound
edge is found, cutting downwards and to the left in the figure (the center, not
shown, is upwards and to the right.) In Figure 3.8(b) the expansion of x has
added three more faces to the net, creating a less-than-π/2 turn in the cut-path
around adjacent vertex y which has not yet been expanded. In Figure 3.8(c) the
ordering of expansion has reached y and the best (in fact, only) edge which can
be cut from y is the edge xy; β at y returns to a valid value. The sole concern
is that in expanding y after x, y’s new cut has altered the total α feeding into
x. x should now be re-expanded, although in this case (and in the majority of
cases, during testing) this re-expansion will not change the choice of outbound
edge.

This demonstrates that there is an interdependence between some sets of
vertices: situations where one vertex must be expanded before another, even
though the distance-based ordering would address them in the wrong order.

This dependence relation could presumably be expressed as a dependency
graph between vertices. However, this graph would change from step to step as
cut-paths were added or merged; it seems improbable that a polyhedron-wide
‘dependency map’ could be built for a surface without constructing the unfolding
beforehand. One version of the YAMM software implementation of the alpha-
beta rules explored this possibility. At every step the algorithm would simulate
every possible expansion of each of the vertices on the rim of the partial net and
then choose to expand only from amongst vertices whose ‘best’ expansions would
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not develop faces across edges which another vertex would later need for its own
‘best’ expansion. In testing, this subroutine proved to be cumbersome, difficult
to extend, and insufficient to the task; it only provided ‘lookahead’ for one edge,
where even the banded icosahedron has vertices which are interdependent across
two or even three adjacent edges.

Rather than take the software down the fruitless path of unlimited-depth
predictive search, a simpler solution was instead chosen, which has yielded the
frames shown in Figure 3.8. For every vertex, always cut the ‘best’ edge ac-
cording to the rules for β and C, even if that edge was previously laid down
unbroken by another vertex’s expansion; but if such an edge must be cut, then
backtrack one step and re-expand the impacted second vertex.

Although it will not be formally proved, it seems reasonable to argue that
this backtrack operation must terminate locally without inducing an uncon-
trolled backtrack cascade. This is because each vertex which is re-opened for
backtracking will still cut an edge to point outwards, away from C. The newly-
cut edge should not touch the vertex which caused the backtrack.

3.3.8 When α is greater than π

Throughout this discussion of the new alpha-beta rules, three quarters of the
problem have actually been ignored: the rules above are for when α is less than
π, but the total angle deficit on a closed convex polyhedron is 4π. What of the
rules for π ≤ α ≤ 4π?

It is tempting, in all honesty, to dismiss the question. Consider: unfolding
will begin at the lowest face, with a cut-path extending from each vertex, so
there are already at least three cut-paths from the very first step. If they
stay separated until the top of the surface these cut-paths will each account
for (on average) 4π/3 radians’ worth of total angle deficit; one more cut-path
independently reaching the top and that average drops to π and the rules above
apply.

Another reason to disregard α > π is that overlaps occur so rarely for higher
values of α. The vast, vast majority of overlaps are local events, n-local collisions
for small n; these collisions are overlaps within cut-paths which are small parts
of much larger unfoldings. By the time α has grown to π the two sides of the
development are across the unfolding from each other; clashes between them
could not happen without crossing all of the intervening faces first.

And yet, neither of these objections is sufficient support for arguing that
higher values of α can be disregarded entirely–not if the goal is a robust proof.
To complete the proof, the rules given above must be extended to greater α,
but this will not be attempted in this dissertation.

3.3.9 Weaknesses in the argument

The arguments which have been presented here are not sufficient to constitute
a formal proof that the alpha-beta rules can unfold every convex polyhedron.
The author deeply regrets that the proof remains incomplete.

The known flaws in the argument are:

• The reasoning that there must exist an outbound edge which satisfies both
the rules for β and for C is tenuous: it holds up well for Hamiltonian cut-
paths but it is, in the author’s opinion, not yet strong enough for the
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case where two or more edges of a cut-path flow into a single vertex to be
expanded. Consider the volcano unfolding of a cone: the transverse line
through the developments of the tip are poorly defined, but worse, the
transverse line between any two non-adjacent developments is crossed by
the development of the intervening face.

• Malcolm Sabin has provided an argument4 that without Lemma 3.7, Corol-
lary 3.5 must also require that the outer development of PQ fall to the
right of the transverse line PL → PR.

• Lemma 3.7 is actually very limited: it guarantees that there will be no
overlap between developments on the same side but not between left and
right sides. Without this, the proof is incomplete. The argument seems
feasible: there is a relationship between the ordering of the left-hand and
right-hand (red and blue in Figure 3.6) concentric circles which bound
the developments of each new edge. It may be possible to exploit this
relationship to use Lemma 3.3 and Corollary 3.5, perhaps by showing
that there will never be more than two sequential red rings before the
next blue (or vice versa).

• The reasoning that a vertex Q can be added to extend a cut-graph without
overlap does not show that a second edge can be cut from some other cut-
path to Q without causing intersection between the two cut-paths.

• As described above, the ordering of vertices is still a topic of open research.
It would be nice to be able to justify the choice of the particular ordering
chosen with a better reason than ‘experimental testing’.

• A significant improvement to the backtracking support would be to undo
any face developments as part of a backtrack, in addition to flagging down-
stream vertices for re-appraisal. The difference would be that those down-
stream vertices had already developed their faces and those faces then
influenced the developments of other nearby vertices; all of those vertices
should be rolled back too.

• Formal support for α ≥ π is essential.

• Despite the author’s assurance that backtrack could not induce an infinite
loop, this is not actually quite true: on very rare occasions in testing,
the author found that the topmost face of the surface would circle around
the outer rim of the unfolding, looping forever as one of its vertices was
developed and the other two marked for re-development continually. This
is a software glitch, of course, but it does highlight the need for better-
defined termination guides in the rules.

• There are still a few very rare and hard-to-categorize cases where the
software will fail to find an overlap-free unfolding, despite following the
rules above. These cases seem to always be related to the poorly-defined
termination conditions and issues related to backtracking.

4Personal communications, 2008
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3.3.10 Experimental support

The alpha-beta rules have been implemented in the YAMM testbed with re-
markable, but not perfect, success. The algorithm can unfold extremely ‘dif-
ficult’ surfaces such as the banded third-level subdivision of an icosahedron;
which is notable because it does so entirely without testing for collisions. This
really is a striking result, all the more so because overlap is generated in the
course of the unfolding–but it is repaired as the process continues. In short, the
nets are clearly being generated according to rules which do prevent overlap.

However, there are still difficulties in the software with the final steps of
the unfolding. As the end of work draws near on this dissertation, the final
YAMM implementation of the alpha-beta rules has a success rate of 202,376
successful unfoldings out of 203,556 randomly-generated simplicial convex poly-
hedra, roughly uniformly distributed from 4 to 300 faces. That gives a success
rate of 99.91%: impressive, but not ideal. Analysis of the failure cases suggests
that the flaw lies in the interdependency of vertices in the penultimate stage of
unfolding.

Algorithm A.20, a formal algorithmic declaration of the implementation of
the alpha-beta rules, can be found in Appendix A on page 175.

Figure 3.9 shows three successful unfoldings.
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(a) (b)

(c)

Figure 3.9: (a) A randomly-generated convex polyhedron, unfolded by the
alpha-beta rules. (b) The alpha-beta unfolding of the banded icosahedron. (c)
The alpha-beta unfolding of the doubly-banded icosahedron, a banded icosahe-
dron whose faces have, in turn, been polyhedrally banded. Note the cracks
spreading as directly as possible away from the center of the unfolding.
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3.4 Collision Repair

Sketch of the proof : It is shown that any one collision in an overlap-
ping unfolding can be repaired by moving the collided faces, although
this may introduce new collisions elsewhere. It is then argued that
on certain types of nets, new errors are introduced no nearer to the
center (and often further out) than old ones, ensuring that if errors
are repaired beginning with those closest to the center that they can
ultimately all always be repaired.

This section presents the building blocks of a proof. The proof is not com-
plete, and the work which remains to be done is detailed before the end of the
section.

3.4.1 Terminology

Flow on a cut-graph In the discussion of this section it will be useful to de-
scribe the ordering of vertices on a cut-graph. Returning to the common
metaphor of the cut-graph as a set of streams emerging from a mountain-
side and flowing downhill away from its leaf-nodes, the terms ‘upstream’
and ‘downstream’ will be used to describe the relative positions of two
vertices. Specifically, for two vertices P and Q in the cut-graph T , if
the longest path on T from any leaf-node of T to P is longer than the
longest such path to Q then P is said to be upstream of Q. To extend the
metaphor, this means that if one were to sail a boat from outside an un-
folded net into the gap between the outermost developments of a branch
of the cut-graph, one would pass the developments of Q before reaching
those of P .

k-local overlap In (Luc06, p.34), Lucier defines k-local overlap as follows:

Suppose P is a polyhedron with an unfolding [net] U . Suppose
further that there is an overlap between faces f1 and f2. Then
if there are at most k vertices in the shortest path along edges
of U starting with a vertex incident to f1 and ending with a
vertex incident with f2.[...] In particular, an overlap is 1-local if
f1 and f2 are both incident with a common vertex.

Using this definition and reasoning akin to that of Polthier in (Pol03) (see
Lemma 1.2, p. 15), Lucier then gives the following useful lemma:

Lemma 3.8 (Lucier) No unfolding of a convex polyhedron contains a
1-local overlap.

The dual of a developed edge Every cut edge unfolds to a right develop-
ment and a left development. The dual of the left development is the
right development, and vice-versa.

The parent of a face Every unfolded net is a connected, acyclic graph: an
undirected tree. Define the parent of a face P in an unfolding as the face
which is adjacent to P in the unfolding and which lies toward the root of
the net.
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Figure 3.10: Detail of a collision showing labeled terms. There is exactly one
first crossed edge in every collision.

If P lies on the path in the net from Q to the root of the net then P is an
ancestor of Q.

3.4.2 The first crossed edge

Oftentimes when a net unfolds to collisions, more than two polygons are caught
in the same group of overlapped faces (see Figure 3.11, in which each collision
involves three faces.) For every such group of collisions there is always an edge
which must be crossed before all others as the cut flows downstream. The first
crossed edge is defined to be the edge which lies furthest upstream of those
which are crossed in the collision, whose dual is not crossed, and whose dual lies
upstream from the collision (Figure 3.10.)

Lemma 3.9 For every group of overlapped faces, there must exist exactly one
first crossed edge.

Proof. By Lemma 3.8, no unfolding of a convex polyhedron contains a
1-local overlap. Every overlap is therefore at least 2-local and so there must
exist at least one edge on the cut-graph which is not crossed and which is
separated from the outside of the unfolding by the collision. Borrowing once
again from the maritime metaphor, call this edge and the set of all adjacent
edges in the border of the unfolding, up to but not including the first edges
caught in collision on either side of the cut-graph branch, the ‘lagoon’ of the
collision. Lucier’s corollary guarantees that in any overlap, the lagoon is not
empty.
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At the mouth of the lagoon are two edges which are crossed, either by each
other or by other edges in the collision. Label these two edges A and B. Assume
without loss of generality that A lies upstream from B (Figure 3.10.) Then AR

lies upstream from BR on the right development of the branch of T which
contains A and B, and AL lies upstream from BL on the left. If it were the case
that AL were also conflicted then the conflict of AL would be further upstream
(into the lagoon) than the conflict of BL, in which case BL would not have been
the first collided edge on the left-hand shore–a contradiction.

Thus, for every lagoon there is exactly one first crossed edge.
The one exception would be if A were the same edge as B. However, this

is impossible. The left and right developments of every edge diverge in the
unfolded plane by the sum of the angle deficits of all of the vertices on the cut-
graph branch upstream from them, which must be a positive angle on a convex
surface. Then the two edges can only cross if they do so at a positive angle
(measured counterclockwise from the direction of travel of the right development
to that of the left). This is only possible where the left development travels
outwards from right to left and the right development travels outwards from
left to right (where the direction ‘outwards’ refers to ‘along the perpendicular
bisector of the sweep from one development to the other.) This would imply
that the two developments are proceeding from positions in which their lower
vertices have exchanged positions, which could only be possible if there were
another intersection between the developments further upstream on the branch.
This would mean that A or B were not in the lagoon’s innermost collided pair.
�

3.4.3 Repairing a single collision

A collision is repaired if one edge is removed from the cut-graph and another edge
added in such a way that the original pair of crossed edges no longer intersect
in the unfolding. A method for repairing a conflict is defined in Algorithm 3.

The design of Algorithm 3 is quite simple. The lowest crossing is identified
and within it X, the first crossed edge. X determines PX , the face which will
not move. PY is then attached to PX by unfolding the shortest path between
them; there can now be no conflict between PX and PY , as no cut-graph branch
separates them.

The shortest path between two faces is the set of faces which contain the
geodesic path between the center points of the two faces.

Caveat : In the author’s implementation this algorithm is slightly modified:
the shortest path is actually computed by minimizing the number of steps on
the graph of face-to-face adjacency on the polyhedron, and the path chosen is
not allowed to include the edge which had anchored PY to its parent. The
motivation for this choice is discussed below.

Lemma 3.10 If a collision between faces PX and PY is repaired according to
Algorithm 3 then there will no longer be any overlap between PX and PY .

Proof. If PX and PY share an edge then this is trivially true.
If ‖L‖ > 2 then the algorithm will unfold the shortest path from PX to PY

into a strip of faces which contains a geodesic on the surface from PX to PY
and therefore contains a straight line in the unfolded plane. Thus the faces of
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Figure 3.11: The unfolded net of a randomly-generated surface with 296 faces,
which has four separate conflicts when unfolded by the Steepest Ascent Unfolder
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Algorithm 3: Repairing a single collision in cut-graph T

1: Let edge X be the first crossed edge in the collision
2: Let edge Y be the edge furthest upstream which crosses X
3: Let face PX be the polygon in the source polyhedron whose development

contains the edge X
4: Let face PY be the polygon in the source polyhedron whose development

contains the edge Y
5: Let L = {p0 = PX , p1, . . . , pn−1 = PY } be the shortest path on the

polyhedron from PX to PY
6: for each pi ∈ L, i > 0 do
7: Let e be the edge shared between pi−1 and pi
8: Let g be the edge shared between pi and the parent of pi
9: if e ∈ T then

10: Remove e from T
11: Add g to T
12: end if
13: end for

(a) (b) (c) (d)

Figure 3.12: The overlapped random unfolding of a random convex polyhedron
of 38 faces is repaired by repeated application of Algorithm 3

the path cannot intersect. (Note, however, that no statement is made about
whether or not the faces on the path intersect faces not on the path.) �

Corollary 3.11 Every collision can be repaired.

Proof. For every pair of faces, there exists a shortest path between them.
If this path is unfolded as described above then the two faces cannot intersect.
�

3.4.4 Application of the repair algorithm

It has now been shown that every collision can be repaired. Is this sufficient to
remove all collisions from any overlapped net?

No. To repair a collision may very well introduce others. In experimental
trials, the simple mechanism described thus far has been found to sometimes
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Algorithm 4: Collision repair for randomized nets

1: Let U be a randomly-generated unfolding of the polyhedron
2: Let M be a map from nets to integers; M [u] is zero for any unfolded

net u which has not been previously visited
3: Let F0 be the first developed face
4: Let C be the center of F0

5: while ∃ collisions in U do
6: Let K be the collision in U closest to C
7: if M [U ] ≥ 4 then
8: Return failure
9: else if (M [U ] ++) is not odd then

10: Repair K by holding PX fixed and moving PY
11: else
12: Repair K by holding PY fixed and moving PX
13: end if
14: end while

move a face across a cut-graph branch into a new conflict for which the only
repair would be to move it back again in what would immediately become an
infinite loop.

This is not to say that the algorithm does not have its successes. Given
that there is no heuristic in the repair method which implies any sense of ‘ori-
entation’ to the repairs, it has seem reasonable to apply this repair method to
a randomly-generated unfolding of a randomly-generated polyhedron; a sample
sequence of such unfoldings and repairs is shown in Figure 3.12. Simply ap-
plying Algorithm 3 repeatedly is sufficient to remove all collisions from the net
shown.

Still, despite this encouraging result, infinite loops do occur. To avoid loops,
a more globally-aware algorithm is needed. There are two reasonable approaches
to such a problem:

1. Record nets which have already been visited and avoid them

2. Introduce heuristic knowledge from other successful unfolding algorithms

3.4.5 The first approach: repairing a randomly-generated
net

The design of this algorithm may not be immediately clear, but it is sur-
prisingly effective. The key insight here is that the choice to keep PX fixed
while moving PY in Algorithm 3 was essentially arbitrary. In fact there are two
possible solutions to every collision: PX may anchor PY or PY may anchor PX .

Algorithm 4 repairs every conflict that it finds, knowing that in doing so
it may move a face into a position in which the only repair for that face is to
restore it to where it came from. Rather than falling into an infinite loop at this
point, Algorithm 4 registers that this is a visit to a previously-encountered net
and ‘flips’ the collision so as not to move the face which had previously been
moved into conflict. Thus if a loop is found it simply tries to go the other way.
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Figure 3.13: This detail from an overlapped random unfolding of a random
convex polyhedron cannot be repaired by Algorithm 4. With two branches of
the cut-graph competing to determine which direction is ‘upstream’ from the
collision, the algorithm becomes caught in an infinite loop.

The odd choice of 4 for a termination test instead of 2 is driven by the fact
that a ‘state’, if one were to think of each of the nets being generated as a node
of a tree of nets to be searched, includes whether the last visit to the net was
odd or even indexed. So if two faces are ‘arguing’ back and forth in a collision,
it is not enough to try both directions of fix for only one of the possible nets;
both possible nets for both placements of the faces must be explored. But if
after both nets have tried to fix themselves with both possible solutions, none
has worked, the algorithm must return failure.

Algorithm 4 is flexible, resilient to variable data... and is, essentially, a
method to explore all possible repairs for a given initial unfolding. Infinite
loops notwithstanding, it will eventually visit every possible solution of the net,
and it does so in a guided exploration whose sole heuristic is to reduce the
number of conflicts. The simple argument for Algorithm 4 is:

Every repair removes (at least) one conflict and only some re-
pairs introduce new ones. Therefore the total number of colli-
sions in the net must decrease over time to zero.

Clearly, this is not a bullet-proof argument; but it expresses the spirit of the
algorithm nicely.

Conjecture 3.12 Algorithm 4 will repair the overlaps of any unfolding of any
convex polyhedron.

Rebuttal
Unfortunately a counterexample has been found. Figure 3.13 shows a detail from
a randomly-generated unfolding which induces an infinite loop in Algorithm 4.
The collision is oriented in such a way that the ‘flip’ of each possible repair
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Algorithm 5: Collision repair for outward-facing nets

1: Let U be a Steepest Edge unfolding of the polyhedron
2: Let F0 be the lowest face in the polyhedron
3: Let C be the center of F0

4: while ∃ collisions in U do
5: Let K be the collision in U whose most upstream point of intersection

is closest to C
6: Repair K
7: end while

(that is to say, the repair operation with the labels PX , PY exchanged) is the
unflipped repair from the other side of the conflict; the algorithm quickly reaches
four flips and returns failure. �

3.4.6 The second approach: repairing an outward-facing
net

Statistical analysis of the most successful unfolding algorithms has shown
that one pattern of unfolding is more effective than all others: unfoldings in
which the net, informally speaking, resembles a starburst. Schlickenrieder’s
Steepest Ascent algorithm5 (Sch97, p.54), the discrete version of the Star Un-
folding (p. 30), the author’s Least Height Unfolder (p. 124), the alpha-beta
rules (Section 3.3) and even breadth-first unfolding (p. 124) will consistently
outperform algorithms which follow other patterns.

Let C be the center of the unfolding, the midpoint of the first developed face.
Recall that the inner development of edge PQ is labeled P IQI . A net is said
to be strictly outward-facing if, for all edges P → Q where P is upstream from
Q, ‖PL − C‖ < ‖QL − C‖ and ‖PR − C‖ < ‖QR − C‖. This requirement may
be relaxed; a net is said to be simply outward-facing if, for every edge P → Q
where P is upstream from Q, ‖P I − C‖ < ‖QI − C‖; no requirement is made
on the outer development.

The author has found that the Steepest Edge Unfolder gives an outward-
facing (and, in approximately 95% of the cases sampled, a strictly outward-
facing)6 net, which is sufficient for the repair algorithm. Using the Steepest
Edge Unfolder to construct the ‘seed’ net for Algorithm 5 has had startlingly
positive results.

One effect of performing repairs on an outward-facing net is that the repair
cycle does not fall into an infinite loop. Intuitively, the reason for this is that
each repair extends a cut-graph branch by adding at least one new cut edge to
the downstream side of the ‘lagoon’. The new cut edge has two developments,
only one of which belongs to a face which has moved; the other edge belongs to
an immobile face which is not a part of the current conflict. This means that if
the newly-moved face has moved into an overlapping position, then it already
has an edge whose dual is unconflicted, which will be the first crossed edge in

5Steepest Ascent: For each vertex, cut the edge to the vertex with the highest Y-value in
the surrounding 1-ring

6Caveat : this claim was not tested for a statistically significant number of nets
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the next repair. Therefore the face which was moved in the first repair will not
move in the second, and so will not be returned to its former position.

The key idea of Algorithm 5 is that in an outward-facing net, the sides of
a development point downstream and away from the unfolding’s center. This
means that there is a rough–not perfect, but sufficient–correlation between how
far downstream a face falls on the cut-graph and how far from the center it will
be when developed. On an outward-facing net when a repair moves a face from
one side of a branch to the other, the face moves laterally, traveling roughly
‘across the current’ of the cut, with relatively minimal movement toward or
away from the center of the unfolding. Since every face on the shortest path
between PX and PY must lie between the two in the flow of the cut, the repair
algorithm ensures that no face further upstream than PX and PY is impacted
by the repair. Then the argument for Algorithm 5 is:

Every repair removes (at least) one conflict and only some re-
pairs introduce new ones, and no new collision will ever be in-
troduced further upstream than PX and PY . Therefore, even if
the minimum distance from the center of the unfolding to the
nearest collision may sometimes shrink for a single repair, it
must increase in the long run, until there are no collisions left
in the net.

Again, this is not a bullet-proof argument, but it expresses the spirit of the
algorithm nicely.

And here is the amazing thing: it works. On simplicial convex polyhedra, it
works every time. (So far.)

Algorithm 5 was tested on over 700,000 randomly-generated simplicial con-
vex polyhedra of up to 300 vertices apiece, generated by taking the convex
hulls of points randomly placed on a sphere. It was also tested against the
banded icosahedron for L = 0, 1, 2, 3, and other known ‘difficult’ convex poly-
hedra. Even the counterexample to Algorithm 4 was unfolded without overlap,
because the anchor-shaped cut-graph branch that defeated Algorithm 4 will not
be generated in Algorithm 5.

Algorithm 5 has also been tested on over 75,000 randomly-generated non-
simplicial convex polyhedra. Compared to the 700,000 simplicial tests, the
author does not feel that this represents a sufficient sample, and so the claim
that ‘it works’ will be restricted to simplicial polyhedra. Nonetheless, no coun-
terexample has yet been found in either set of tests.

Algorithm 5 has displayed remarkable success at repairing a truly vast array
of overlaps on simplicial and non-simplicial surfaces alike. It seems incredible
that such a simple method could be so effective, but the testing data is undeni-
able.

3.4.7 Weaknesses in the argument

Collision Repair (Algorithm 5) is a method which can unfold every surface
devised to date, but this does not constitute a proof that Collision Repair can
unfold every convex polyhedron. The author deeply regrets that the proof
remains incomplete.

Algorithm 4 would seem to be more powerful and flexible than Algorithm 5,
but it can fail. Even if the current vulnerability to infinite loops were corrected,
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the core design of the algorithm–a guided tree search which may exhaust all
possible nets–implicitly implies that failure is possible. As such, while it may
be more useful for the ‘real world’ (and, in particular, perhaps for non-convex
surfaces) it cannot be used to prove that all convex polyhedra are unfoldable.
In contrast, Algorithm 5 has no failure state.

The known flaws in the arguments are:

• A key lemma in support of Algorithm 3 would be to show formally that
the unfolding of the path from PX to PY cannot contain a self-intersection.

• A second key lemma in support of Algorithm 3 would be to show formally
that no face in the path from PX to PY will lie further upstream or
downstream than PX and PY .

• It is unclear why the initial net benefits from the outward-facing prop-
erty. Theoretical support for this observed result would greatly benefit
the proof.

• After a single repair, a net may lose the outward-facing property. Algo-
rithm 5 does not address this explicitly yet in testing it has not been a
problem. From this observation it can be conjectured the outward-facing
property may be stronger than is necessary.

• A key lemma in support of Algorithm 5 would be to show formally that
repair on an outward-facing net cannot fall into an infinite loop. The ex-
planation given for why this is not the case is insufficient: it does not make
clear how an outward-facing net behaves differently from a randomly-
generated unfolding, an essential distinction.

• A second key lemma in support of Algorithm 5 would be to show formally
that there is a bound on how much closer to the center a face being moved
in a repair can travel.

• A useful corollary would then be to show that there is a bound on how
much closer to the center a second face can be moved, if it is moved in
response to the motion of a first face which has already been moved in
a repair. There would seem, intuitively, to be an inward limit on such
cascading motion.

• Although empirical testing is not required for the proof, it would lend
further strength to the argument if non-simplicial convex polyhedra were
to be tested as extensively as simplicial surfaces.

3.4.8 Experimental support

All figures in this section were generated by Algorithm 5.
Figure 3.14 shows a simple example: a net with two conflicts when unfolded

by the Steepest Ascent Unfolder. Both conflicts were repaired.
Figure 3.15 shows the progressive repair of a randomly-generated non-simplicial

convex polyhedron.
Figure 3.16 shows the progressive repair of the banded icosahedron.
Figure 3.17 shows the repaired unfolding of the doubly-banded icosahedron.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Repairing two simple conflicts. (a) The polyhedron (b) The un-
folding, with collisions (c) Detail of the first collision (d) Detail of the second
(e) The first collision, repaired (f) The second collision, repaired
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Figure 3.15: Repairing a randomly-generated convex polyhedron
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Figure 3.16: Repairing the banded icosahedron
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Figure 3.17: The doubly-banded icosahedron
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3.5 Conclusions

The lower bound of undevelopable

The concept of the smallest undevelopable convex polyhedron has been intro-
duced, and while it has been shown that the conjectured structure of the proof
based on this polyhedron is untenable, the idea itself has not been shown to
be invalid. The conjecture that the smallest undevelopable polyhedron can be
shown not to have faces with three, four, or five sides–and hence cannot exist–
remains open.

An intriguing side result of the consideration of this proof was Lemma 3.2,
which shows that if the smallest undevelopable convex polyhedron P0 does exist
and has triangular faces which can be achieved through vertex truncation, then
there are very strict requirements–so strict as to seem almost impossible to
meet–on any polyhedron P1 which could be truncated to P0.

The alpha-beta rules

The alpha-beta rules consist of two lemmas and supporting corollaries which de-
scribe a partial ordering of the expansion of the vertices of a convex polyhedron.
It is argued that if these rules are followed, any convex surface can be unfolded;
it is also argued that these rules can always be followed. The proposed proof is
incomplete, but it is supported by considerable statistical evidence: the alpha-
beta rules are outperformed in experimental trials only by the Least Height
Unfolder (Section 4.5.3) and the collision repair algorithms.

To complete the proof of the alpha-beta rules, much work remains. The
backtracking issues which plague the software must be resolved if its data is to
be viewed with any confidence. It will be necessary to extend the rules to cover
the full range of values of α, and Lemma 3.7 must be made more robust in its
proof that previous edges will be left uncrossed.

An alternative definition of V ′P has been suggested which incorporatesAD(P )
into αP . This is worthy of further investigation.

Collision repair

If it were possible to show that every set of collisions in any net of a convex
surface can be repaired, then this would be a proof that all convex polyhedra
are unfoldable.

It has been shown that every individual collision may be repaired. Two
algorithms have been demonstrated which use this repairing operation with
great success:

• Algorithm 4 explores all possible unfoldings, executing a tree search which
seeks to minimize the number of overlaps, potentially visiting every possi-
ble of the polyhedron. Algorithm 4 is very complete but can fail, making it
unsuited to a role in the proof: it is impossible to show that any algorithm
which allows failure can repair every net.

• Algorithm 5 combines the Steepest Ascent Unfolder (Section 4.5.3) with
collision repair to produce an algorithm which has successfully unfolded
hundreds of thousands of randomly-generated simplicial convex polyhedra
and tens of thousands of non-simplicial convex polyhedra, as well as all
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‘known to be hard’ test cases. However, the author has been unable to
argue conclusively why this particular combination of algorithms is so
successful. Although a number of supporting ideas are advanced, the
proof itself remains incomplete.

To complete the proof of collision repair, several formal demonstrations of
supporting concepts are required, such as proofs that a shortest path on a poly-
hedron unfolds without self-intersection and that a face moved in a repair cannot
be placed further upstream than the face which caused it to move. The connec-
tion between outward-facing unfoldings and the fact that a loop never occurs in
Algorithm 5 must be clarified. This is a critical lemma, as it distinguishes the
second approach from the first. Other supporting lemmas and demonstrations
are also called for.

Still, the fact remains that to all available evidence, Algorithm 5 is a fully-
functioning solution. To close the gap now between software implementation and
mathematical proof may prove to be a lengthy task, but it is unquestionably
worth the effort for future researchers in the field.



Chapter 4

Designing Algorithms for
Convex and Non-Convex
Polyhedra

4.1 Introduction

Within the Unfolding Problem lies the question,

Given an arbitrary connected polyhedral surface, how quickly can a
valid unfolding (or its impossibility) be determined?

This question addresses itself to both the convex polyhedra of Chapters 2
and 3 and to the much larger class of nonconvex polyhedra: surfaces with bor-
der, surfaces with bumps and holes, scanned surfaces (such as the cow model
in Figure 4.1) and many more. The algorithms presented here cannot unfold
every surface, for it is already known that some non-convex surfaces cannot be
developed without overlap (such as the ‘witch’s hat’ assembly, p. 13.) Instead
this chapter explores the process by which an unfolding algorithm is designed
and how these differing methods may be classified.

The algorithms discussed in this chapter are grouped, roughly, as follows:

• The ‘brute force’ unfolders, described in Section 4.4, are designed to op-
erate independently of the convexity of the polyhedron upon which the
algorithm executes.

• The ‘progressive’ unfolders, in Section 4.5, draw their function from heuristics–
implicit or explicit–which draw on the features of convex surfaces. While
the progressive unfolders can be run on non-convex polyhedra, to do so
brings at best unpredictable results.

• The ‘curvature-aware’ unfolders are especially designed to operate on non-
convex surfaces, and their performance suffers demonstrably on convex
surfaces without border. Section 4.6 describes these algorithms, marking
the first publication (to the author’s knowledge) of algorithms specifically
targeted at the general class of non-convex polyhedra.

105
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Figure 4.1: The polyhedral model of a cow, a nonconvex surface and one of the
classic scanned models of contemporary computer graphics. The cow is often
used in curvature-related research for its combination of broad and sharp regions
of both positive and negative curvatures. It remains an open question whether
this surface can be unfolded without overlap.

• The ‘evolutionary’ unfolders of Section 4.7 fall heterogeneously outside of
the previous categories.

4.1.1 A question of graphs

The Unfolding Problem is, at heart, a quest for graphs. The polyhedron’s 1-
skeleton is a graph; the unfolded net is a graph; the cut-graph is (naturally)
a graph. They all come together to give a single simple boolean report: does
the unfolding self-intersect, or not? The graphs are constrained in their struc-
ture and configuration, restricted to rules that often can only be validated by
measures which seem to lie beyond the state of the graphs themselves; the task
of describing these rules in some manner which can be deterministically and
procedurally evaluated has proved difficult, even daunting. But this is still, in
the end, a quest for graphs.

The Unfolding Problems addressed in this dissertation fall broadly into two
camps. The quest for a mathematical proof that all convex polyhedra are edge-
unfoldable; and the quest for an algorithm which can edge-unfold any unfoldable
surface (and reject those which are not unfoldable) in ‘reasonable’ time. This
chapter deals with the latter, for if such an algorithm could be found it might also
answer the former. Although with that said, the reader is cautioned that this is
not necessarily the case: the existence of a method which can unfold all that is
unfoldable, does not necessarily imply that everything (or even just everything
convex) actually is. Still, there is cause for hope; a few of the approaches
described here are resilient and robust in the face of highly variable data and
should be taken as hopeful signs for future solutions.
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To quote Malcolm Sabin1, “An [unfolding] algorithm [would be] a construc-
tive proof of the theorem that all convex polyhedra are unfoldable. Indeed, it
is hard to see how any other kind of proof would work for the [...] mixture of
topology and geometry that this problem has.”

4.2 Categorizing Unfolding Methods

Unfolding algorithms, colloquially referred to as Unfolders, may be grouped
into several different camps. Some methods optimistically select a candidate
solution wholly-formed and evaluate it for success; others assemble a possible
solution piece-by-piece, validating progressively; a third class seeks to evolve
some (generally simpler) solution from a previous state toward a new solution.

Each of these approaches has both positive and negative traits. For example,
validating a net to check for self-intersection is not a quick process, and while it
can be accelerated with clever data structures it remains an operation bounded
at best by the number of faces of the polyhedron. As such, the unfolders which
create an entire cut-graph or unfolding net and then evaluate for validity may be
described as ‘optimistic’ algorithms, for they defer this costly verification step
until after computation is done. On the other hand, algorithms which build a net
or cut-graph piecemeal, sequentially, will often evaluate their progress as they
go, giving them immediate feedback on self-intersection and thereby opening
the possibility of dynamic geometry-sensitive error-correction at the cost of a
significant runtime overhead.

In describing an unfolding algorithm, the immediate output of the method
may be described as a net of polygonal faces or as a cut-graph of broken edges.
While these two forms of expression are exactly identical in terms of the data
they convey, in practice they lead to notably different styles of algorithm devel-
opment. It is often much more natural to approach a problem through addition
rather than subtraction: that is, it is often more natural to view an unfold-
ing as the serialized concatenation of individual faces rather than as a set of
edge-removals.

For example, when a face is glued to another face, it is immediately clear
if there is a conflict between the new face and the previous net; on the other
hand if a cut edge is added to a cut-graph and self-intersection appears, the
conflict induced may be at some far-distant edge across the unfolding where the
relationship between cause and effect is much less clear. But then again, there
are several schemes or methods such as local convexity (Section 2.6) and the
alpha-beta rules (Section 3.3) which leverage the relationship between leaf-nodes
of the cut-graph and dependent edges to reduce the probability of intersection.
Thus both approaches have merits and downsides.

A third axis by which to distinguish families of unfolders is by their decision
classes. Every unfolder implicitly chooses which edges to cut (or which edges
to glue); different unfolders make these decisions based on different factors, and
algorithms may be grouped accordingly. The scope of the decision class of the
unfolder tends to determine the breadth of its output.

For example, the Iterative Unfolder (section 4.4.2) visits every combination
of every possible gluing of every face in the polyhedron exactly once; it decides
between solutions at the level of the unfolded net. The output of the Iterative

1Personal communications, 2007



108 CHAPTER 4. UNFOLDING ALGORITHMS

Unfolder is a series of nets, including invalid nets with loops and disconnects.
In contrast the Curvature Ordering Unfolder (section 4.6.2) makes choices as
it is constructing its output, choosing the next face to glue to the unfolding
by searching across the gradient of curvature. Thus its decision class is much
more advanced and its output much more limited; in fact, its output is only
a single unfolding which may or may not self-intersect. Occupying the middle
ground between these two classes of decision coverage would be unfolders like
the Least Height Unfolder (section 4.5.3,) which chooses the next face to glue
by making a geometry-aware choice but which can be easily adapted to handle
self-intersections encountered during unfolding, giving it an output of only a
single unfolding but which reflects dynamic error correction.

The complete set of classes of unfolding methods is shown in Table 4.3.
Table 4.1 shows a breakdown of each of the unfolding algorithms.

4.2.1 Schlickenrieder’s Thesis

The lion’s share of this chapter explores the series of unfolders designed and
built by the author in the course of research. It is inevitable that such an ex-
ploration should bear a more than passing resemblance to the thesis of Wolfram
Schlickenrieder (Sch97), whose evaluation of 34 different unfolders paved the
way for significant later research. In fact, several of the algorithms described
here are derived from or inspired by Schlickenrieder’s algorithms. The author
gratefully acknowledges Schlickenrieder’s work.

Of the unfolding algorithms discussed here, the following four methods were
first implemented by Schlickenrieder:

• Breadth-first (Sch97, p.39)

• Depth-first (Sch97, p.41)

• Star (Sch97, p.48)

• Steepest Ascent (Sch97, p.54)
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Class of Construction Brute Force Create the whole net and evaluate

Progressive Create the net or cut-graph piece-by-
piece and evaluate

Evolutionary Evolve the net from a previously-known-
good state

Glue or Cut Glue Glue faces to available edge

Cut Add edges to growing cut-graph

Decision Class Working face Select next face from those adjacent to a
‘working face’

Working face set Select next face from a working set (usu-
ally an advancing front)

Any face Select next face from all available faces

Working edge Select next edge from those adjacent to a
‘working vertex’

Working edge set Select next edge from those in a working
set (usually an advancing front)

Any edge Select next edge from all possible edges

Working vertex Select next vertex from a ‘working vertex’

Working vertex set Select next vertex from a working set
(usually an advancing front)

Net Whether or not the net self-intersects

Cut-graph Whether or not the net self-intersects

Decision Basis Local geometry Net or graph grows by immediate (local)
geometry decisions

Overall geometry Net or graph grows by overall (global) ge-
ometry decisions

Success Unfolding either works or doesn’t

None All unfoldings are considered, even if the
first one found is intersection-free

Output Class One unfolding by fixed root Exactly one output, independent of ge-
ometry but dependent on an arbitrary
choice of starting face or edge

One unfolding Exactly one output, independent of ge-
ometry and independent of starting place

One error-corrected unfolding Exactly one output but decisions are
made during its generation which are de-
pendent on geometry

Series of unfoldings One or more unfoldings, each evaluated
in turn until one is successful, potentially
yielding all unfoldings

All possible unfoldings All possible unfoldings

Error Tolerance None Output does not self-correct for geometry

Adapt (partial) Output self-corrects for local geometry

Adapt (until successful) Output self-corrects until successful (may
extend beyond local geometry)

Table 4.1: Families of classification for unfolding algorithms
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Brute Force Progressive
Heuristic

Progressive
Geometric

Progressive
Curvature

Total Breadth-First Least Height Curvature Ordering

Face Trees: Depth-First Steepest Ascent Tracer

Precomputed Depth / Breadth Star Region

Iterative Unravel

Spanned Evolutionary Convex Hull Other

Family Tree Truncation Radius Minimizer Manual

Error Correction Path Minimizer Random Cut

Table 4.3: Families of unfolders

4.3 Heuristic Tree Search

4.3.1 Measuring self-intersection

It is natural to seek some measure by which one unfolding could be seen as more
worthy of investigation than another. It would be ideal if there were some way
to order the unfoldings of a polyhedron before they have been evaluated or even
counted, as this would be an excellent decision class for an unfolding algorithm.

Demaine and O’Rourke introduce the concept of overlap penetration, which
measures the interpenetration of two polygons. The degree of overlap is defined
by “the ratio of the largest overlap penetration [ωmax] in [the unfolding] U to the
diameter of the polyhedron P .” (DO07, p. 308) Demaine and O’Rourke then
pose Open Problem 22.2: to find “an algorithm that results in small overlap,
for example, one that guarantees unfoldings with overlap penetration no worse
than a constant fraction of ωmax.”2

The natural question is, “if overlap penetration measures how ‘badly’ an
unfolding has gone awry, why have known minimization methods (simulated
annealing, etc) not been applied successfully to the unfolding problem?”

4.3.2 Discontinuous spaces and heuristic searches

At fault are the discontinuous natures of both the decision space and the ob-
jective function. These terms are drawn from optimization theory, which is the
study of problems where the goal is the minimization of some scalar function.
In the case of the unfolding problem, the ‘decision space’ is the choice of edge to
cut or glue and the ‘objective function’ is the calculation of ωmax. Convention-
ally, optimization theory has focused on decision spaces and objective functions
which are continuous; that is to say, small changes in the decision value should
correspond to small changes in the objective function, allowing the algorithm
to ‘home in’ on minimum values. Unfortunately, in the unfolding problem the
decision space is discrete and the objective function is discontinuous; it is im-
possible to cut or glue less than one edge, and small changes in the cut-graph
can result in large changes in ωmax.

2An odd yet valid counter-question would be to find the worst unfolding in terms of overlap
penetration: to find an algorithm which produces the greatest possible ωmax. It is improbable
that such an algorithm would be of use in the quest for valid unfoldings, but the question is
still interesting in its own right.
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Artificial intelligence techniques such as simulated annealing and genetic
algorithms are better-suited to discontinuous decision spaces. Simulated an-
nealing allows changes in the decision space which may seem to be ‘bad’ (i.e.,
in this case, to raise ωmax) so long as they are not too bad; the definition of
‘too bad’ is then gradually tightened, eventually prohibiting ‘bad’ moves, and
the decision choice is then selected from the cut-graph or net with lowest ωmax.
Unfortunately, a single edge change can provoke a dramatic rise or reduction
in ωmax with little clear connection to the decision taken, and the discrete na-
ture of the decision space means that sometimes the number of choices–good or
bad–can be sorely limited.

As an example, consider a randomly-chosen polyhedron P of, say, 300 faces,
with an average of four sides apiece. One might construct a decision tree G
where the root node of G was a tree with one element: the bottommost face
of P . Each child of the root of G would be a new tree with two elements:
the bottommost face and one of its adjacent faces. Throughout G, each node
of G would be a tree, consisting of the tree of its parent node plus one more
face which had not yet been glued into the parent. With a bit of filtering to
avoid duplicate nodes in G, one could construct a tree 300 levels deep where
the bottommost row was a set of every possible unfolding of P . Every one of
these possible unfoldings (a loose upper bound on their count would be 4300,
an amazingly large number) could have a different ωmax, and there would be
no clear relationship whatsoever between the ω-scores of adjacent leaves in G.
Furthermore, it would be impossible to evaluate ωmax for a given node without
first having visited the node’s parent in G. A semi-continuous method like
simulated annealing would have no basis by which to choose a path from the
root of G to the leaf of G which minimized ωmax.

To simply move blindly through the nodes of G, visiting them in some order
determined only by the structure of G, could take as many as 4300 visits (a loose
upper bound). A blind search taking no account of the data available at each
node of G would clearly take far too long.

A better approach to such a discrete search is through heuristic tree search.
A heuristic ‘serves to aid discovery’ (Nil71) and generally expresses some insight
into the nature of the problem beyond the reach of formal expression. (The word
itself derives from the Greek heuriskein, ‘to find’, the same root as “eureka”.)
Heuristic search leverages knowledge at each node of G to choose the next node
to explore with better odds of ultimate success than a simple blind traversal.

In heuristic search, a list is held of candidate nodes, which initially consists of
only a single element: the root of the search tree. A node is chosen for expansion
from the list of candidate nodes and the children of that node are added to the
list of candidates. If the node is the node sought–in this case, a complete net
with minimal ωmax–then it is returned as a success.

Heuristic tree search optimizes around two principles:

1. Pruning : A good heuristic will reduce the number of nodes of G which
would be considered for expansion before they are added to the candidate
list.

2. Ordering : The heuristic algorithm can be intelligent in its choice of the
next node from the candidate list to expand.

In the example given, a clever heuristic would realize that there would be
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no point in adding to the candidate list any node of G where the partially-
constructed unfolding already contained overlap (pruning.) As expansion pro-
gressed from the root of G, each time a newly-added face overlapped an existing
face that branch of G would be instantly truncated. This simple filter is the
basis for the implicit error correction used in several of the progressive unfolders
(see Section 4.5, below.)

The second space of optimization offered by heuristic tree search, ordering,
has to date proved to be more elusive. It is as yet unclear what ordering of
gluing the faces of a net would most reduce overlap. In fact, it may well be
that this is entirely the wrong question to ask, for as Lemma 4.1 below states,
the final overlap state of a net is quite independent of the order in which the
net was generated. Many ordering heuristics have been proposed, both by the
author of this work and by other researchers; several are discussed here. The
quest for an optimal heuristic remains open.

4.4 Brute Force Unfolders

The original motivation for exploring the ‘brute force’ unfolders was to construct
an unfolder which must, eventually, find an overlap-free net if one existed. The
plan was to find an upper bound on the complexity of the task of unfolding
an arbitrary surface and to express that upper bound in code. This class of
unfolders is described as brute force because they have no failure mode: each
algorithm will carry on running until a solution is found–or, in some cases, until
every solution is found–with no termination clause other than having reached
the last possible net, even if the search involves quintillions of possibilities or
more.

There is a second motivation for the development of the brute-force algo-
rithms. If a polyhedron were found which the discoverer claimed had no overlap-
free unfolding, it is difficult to conceive of a better proof than to exhaustively
test every possible net for self-intersection. That there are so many possible nets
is unfortunate but would not disprove the conjecture; it would merely prolong
the verification of the claim.

Early attempts at building a brute-force unfolder were plagued by misconcep-
tions and poor design choices, yet they have yielded several interesting results.
Later unfolders improved dramatically on the performance of earlier designs.
The unfolders described in this section include (in rough order of conception
by the author) the Total Unfolder, which constructs every spanning tree of the
faces of the polyhedron and does so once for every possible ordering of every
possible tree; the Precomputed and Iterative Unfolders, which build procedu-
ral representations of all possible nets; the Spanned Unfolder, which constructs
every spanning tree of the faces of the polyhedron; and the Family Tree Un-
folder, which constructs every spanning tree through the incremental addition
of faces and models each generation of spanning trees as a set of supersets of
the previous generation.

It is worth noting that the brute force unfolders are tools which apply to
non-convex and convex polyhedra alike. There is no heuristic preference in these
algorithms, no weighting toward convexity.
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4.4.1 The original brute force unfolder: the Total Un-
folder

The goal of the Total Unfolder (Algorithm A.1) is to enumerate ALL the possible
unfoldings of a mesh. This includes not only every possible way of traversing
the faces of the mesh–that is, all the nets of possible unfoldings–but also to
distinguish the different orders in which these unfolded nets could be laid down.
The goal was an implementation where the unfolding that unfolded face A, then
B off A, then C off A, would be distinct from the unfolding that unfolded A,
then C off A, then B off A–even though the resulting nets were identical. In
short, the goal was to enumerate

Every uniquely ordered traversal...
...of every spanning tree...

...that visits every face of the original polyhedron precisely once.
When the Total Unfolder was first designed, the author was operating under

the (mis)impression that the order in which the faces were added to the unfolding
was relevant; it was reasoned that an unfolding could be tested as it was laid
down, and so the order in which it was built mattered. This was a mistake,
which can be cleanly stated as follows:

Lemma 4.1 The overlap of an unfolding is independent of the order of faces
or edges by which that unfolding was originally calculated.

Proof. The intersecting state of two line segments is independent of the
order in which they are drawn. Similarly the intersection of two polygons in
the plane is independent of the order in which they were added to the plane,
depending only on their relative position and orientation3. �

Corollary 4.2 The overlap of an unfolding is independent of choice of starting
face.

Thus the validity of an unfolding is independent of the order of its evaluation.
Having noted this, it is worth noting as well that many validity tests can leverage
orderings of the faces to optimize against unnecessary intersection tests.

The Total Unfolder implementation treats each face of the polyhedron P as
an unordered collection of edges shared with another face. The algorithm builds
a tree which represents every possible ordering of every possible unfolding; it
does so by enumerating every possible traversal of the polyhedron’s faces, from
edge to edge.

The Total Unfolder works with two distinct types of trees, for which informal
nicknames are introduced:

Harvey A Harvey is a single partial unfolding of the polyhedron. Recall that
a partial unfolding is a connected unfolded subset of the faces of a poly-
hedron (p.11.) Each distinct Harvey represents a single possible subnet of
the faces of P . Each node of a Harvey is a face; each undirected edge of
a Harvey represents the gluing of two faces in the unfolded net.

3In fact, one would be ill-advised to think of an unfolding as taking ‘time’ in any way.
An algorithm generating an unfolding may take some amount of time to compute its answers
but the answer itself contains no time. Each unfolding simply is, without anchor in the 4th

dimension.
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Wayne A directed tree of Harveys is nicknamed Wayne. Each node of Wayne
is a single partial unfolding. The edges of Wayne are directed edges; each
edge H → H ′ represents the addition of a single face to Harvey H by
gluing across a specific edge to create the new net H ′. Each node H of
Wayne is associated with a perimeter set which stores the list of edges
which can be glued to H to produce H ′.

Note that the nodes of Wayne are not distinct: multiple nodes in Wayne
have the same value. However, each node is unique in that the sequence of
directed edges which connects the root of Wayne to that node is unique. What
is of interest in Wayne is how each node is reached, more so than the value
stored at that node.

For example, to enumerate every possible ordering of
every possible unfolding of the cube, one may begin with
face A. From face A, the perimeter set contains four pos-
sible edges to glue: edges AB, AC, AD and AF . (Face E
is inaccessible from A.) Suppose that the next face added
is B, glued across the AB edge. Now the perimeter set
of possible gluings available is AC, AD and AF–because
these options remain open–and BC, BE and BF , because
now B has been added to the growing Harvey.

With each new gluing, all but one of the edges of the newly-glued face are
added to the perimeter set of the new node in Wayne. At the same time, all
other ways of reaching that face can be removed from the perimeter set. For
instance, were the next step to traverse AC, BC would be removed as it is no
longer an option and CB or CA would not be added.

It is worth emphasizing that the edge-gluing sequence A ← B, A ← C
identifies a different node than the sequence A ← C, A ← B. Although the
two partial unfoldings are absolutely identical, the paths by which they were
constructed are not. The Total Unfolder generates all such paths.

To continue the example, consider Figure 4.2, which shows one possible
sequence of edge-gluings to unfold a cube.

Step Face added Perimeter set Next edge
(i) A {AB,AC,AD,AF} AB
(ii) B {AC,AD,AF,BC,BE,BF} AC
(iii) C {AD,AF,BE,BF,CD,CE} AD
(iv) D {AF,BE,BF,CE,DE,DF} AF
(v) F {BE,CE,DE,FE} BE
(vi) E {}

Figure 4.2 shows the gluing sequence A ← B, A ← C, A ← D, A ← F ,
B ← E. Wayne is depth six, the number of faces, which follows readily from
the fact that each step of the algorithm down the tree eliminates one face.

By removing from the perimeter set those edges which now link to a face
which has already been attached, the Total Unfolder avoids any risk of gener-
ating loops or disconnected subgraphs. (On a purely implementation-related
note, detecting loops or disconnected subgraphs is an operation of at best O(n)
cost; this step of the Total Unfolder presents a significant saving to execution
time.)
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(i) (ii) (iii) (iv) (v) (vi)

Figure 4.2: The progressive development of a cube unfolds a single path in the
Total Unfolder

Each path through Wayne from root to leaf represents a single possible
ordering of the generation of a Harvey, one possible unfolding of the original
surface. It is now possible to begin to analyze the total number of paths through
Wayne, i.e., the total number of unfoldings that would have to be tested in the
quest for a valid unfolding with the Total Unfolder. Let:

• {ps}x denote the perimeter set of some node x in Wayne

• ‖{ps}‖k denote the size of the perimeter sets at level k in Wayne, where
the root is level 1

• n be the number of faces in P

• m be the average number of edges per face in the polyhedron P

For purposes of demonstration, it will be assumed that all faces of P have
exactly m sides. Without this assumption, the mathematics quickly become
unnecessarily complicated.

For a child node x at level k in Wayne, the perimeter set {ps}x contains at
most ‖{ps}‖k−1 + (m− 2) and at least ‖{ps}‖k−1 −m elements. To determine
an upper bound on ‖{ps}‖k:

‖{ps}‖1 = m

‖{ps}‖k ≤ ‖{ps}‖k−1 +m− 2
≤ m+ (k − 1)(m− 2)

The total number of children Fk at each level k of Wayne can be bounded
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Figure 4.3: The Wayne tree for a cube. Each node in the graph is parent to
all possible orderings of all possible unfoldings of each of the remaining nodes
beneath it.
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as follows:

F1 = m

Fk ≤
Fk−1∑
i=0

‖{ps}‖k−1 + (m− 2)

≤
Fk−1∑
i=0

(k − 1)(m− 2)

≤ (Fk−1)(k − 1)(m− 2)
≤ (Fk−2)(k − 2)(m− 2)(k − 1)(m− 2)
≤ (Fk−3)(k − 3)(m− 2)(k − 2)(m− 2)(k − 1)(m− 2)
≤ . . .

≤ m(m− 2)(k−1)(k − 1)!

This indicates that the total number of unfoldings which could possibly be
generated by the Total Unfolder is bounded above, regardless of the geometry
of P , by

Fn ≤ m(m− 2)(n−1)(n− 1)!

This upper bound is actually quite loose. The mathematics given above
describe the impossible worst-case scenario in which every step down Wayne
increases the size of {ps} by the maximum (m − 2) new nodes. However, this
clearly can not be the case because, by the nth level of Wayne, the number of
faces remaining to be glued has dwindled to one. It is the last unattached face
outside the level-n− 1 Harvey, with its m possible gluing edges. Once the final
face is glued, there are no further elements in the perimeter set:

‖{ps}‖n−1 = m

‖{ps}‖n = 0

Furthermore, since ‖{ps}‖k−‖{ps}‖k+1 can be at most m at each step down
the tree, it is known that

‖{ps}‖n−k ≤ km

This gives two concrete upper bounds:

‖{ps}‖k ≤ m+ (k − 1)(m− 2)
‖{ps}‖k ≤ (n− k)m

Solving for k, the intersection of these two linear functions4 gives the index
of rk, the widest possible row of Wayne. From this it is known that

Fn ≤ m(m− 2)(r−1)(r − 1)!
4Solving for k:

m+ (k − 1)(m− 2) = (n− k)m

m+ km−m− 2k + 2 = nm− km
(m− 2)k + 2 = (−m)k + nm

(2m− 2)k = nm− 2

k = (nm− 2)/(2m− 2)
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and consequently

Fn ∼ O((mr)((r − 1)!))

where r = (nm− 2)/(2m− 2).

4.4.2 Second-generation brute force unfolders

The Total Unfolder, though interesting and strangely beautiful in its output
(Figure 4.3), performs far more computation than is necessary. The Precom-
puted and Iterative Unfolders were both significant improvements over the Total
Unfolder, abandoning the idea of ordering the generation of an unfolding and
trading it for an improved running time of O(K ×mn), where K expresses the
time taken to construct and test a single net5. Both schemes enumerate every
possible unfolding by computing all possible combinations of uncut edges.

The Precomputed Unfolder

The Precomputed Unfolder computes all combinations of glued edges by build-
ing up an array of trees of nets (Algorithm A.2.) The final length of the array
is mn. The array is filled in in a series of waves, one per face. For each face in
the polyhedron, all arrays previously created are duplicated, once for each edge
of the face, and each duplicate is extended with the face’s neighbor across the
corresponding edge. This form of search will inevitably create loops in the nets
being constructed, so if a net is created that contains a loop it is immediately
discarded. When a net is discarded, its entry in the array is zeroed (line 22)
and remains zero through all subsequent faces, allowing the Precomputed Folder
to avoid redundantly processing looping graphs of the polyhedron’s faces. To
ensure that each net is a connected graph, faces are initially sorted into a list
in which each face is either first or shares an edge with a face earlier in the list.

The Precomputed Unfolder has a running time of O(K × mn). However,
many of the positions it visits can be rejected trivially, which significantly re-
duces that upper bound. It consumes O(n×mn) space, constructing a new tree
for every (non-looping) combination of edges.

The Iterative Unfolder

The Iterative Unfolder follows a different implementation toward an almost iden-
tical destination to its peers. To address the tremendous space demands of the
Precomputed Unfolder and to allow user interactivity during computation while
still generating every possible unfolding net, the Iterative Unfolder describes a
single unfolding of a polyhedron P with n faces, each of which has m edges,
as a length-n, base-m integer. Each ‘digit’ in the integer has valid values from
0 to m − 1, representing by which edge that face is glued to its parent face in

5The precise mechanism by which a net is constructed, if that construction is not a natural
side-effect of the algorithm, is treated as a non-factor here. Construction is generally an O(n)
process. Testing for collision, on the other hand, can be optimized within the evaluation of a
single net through the use of a BSP Tree, a data structure which accelerates spatial testing of a
function such as polygon overlap. The BSP tree is discussed in more detail in Appendix B.7.3.
The particular method of net generation and the specific technology of intersection testing
are not directly germane to the unfolding algorithms discussed here, and will be disregarded
henceforth as ‘solved’ problems.
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the unfolded net (a static choice of root face is assumed.) The main processing
loop is then quite simple: the current index is incremented (in base m) and the
new unfolding tested for loops and disconnects; while loops or disconnects are
found, the index is incremented again. When the integer overflows, computation
is complete.

The integer representation described is clearly a function of implementation,
as no edge of a face of a cube comes ‘first’. However, an arbitrary ordering
function may be assigned with no loss of generality, such as lexicographic order
(p. 9.) Given any consistent ordering and some mechanism that always selected
the same root face upon which to center an unfolding (such as ‘least height’ or
similar) then an entire unfolding could be expressed in at most ndlog2me bits.

The Iterative Unfolder might at first seem to have a worst-case running time
of O(2ndlog2me) as it evaluates every value encodeable in its bit-compression,
but thankfully it actually outperforms this pessimistic estimate. The Iterative
Unfolder has a running time of O(K ×mn), evaluating only those bit-patterns
which constitute valid combinations of the edges of P . Unlike the Precom-
puted Unfolder it cannot trivially discard looped or disconnected trees early
and thereby avoid processing them later, which negatively impacts its practical
running time. This is balanced by its significantly better use of space, storing
most passive data in a highly compressed form, and its interactivity. The user
begins to see results from the Iterative Unfolder almost instantly after processing
begins.

4.4.3 Third-generation brute force unfolders

The second generation of brute force unfolders were designed to construct every
possible net of the polyhedron by enumerating every possible combination of face
gluings. Both algorithms suffered tremendously from the overhead of catching
and filtering graphs with loops and disconnected graphs from their final list of
trees.

The third generation of brute force unfolders uses a more advanced method:
evaluating every spanning tree of the polyhedron’s graph of face-to-face con-
nectivity. A number of algorithms exist for finding all the spanning trees of a
graph; recent work by Kapoor, Kumar and Ramesh (KR00) runs in O(N log V +
V 2α(V, V ) + V E) time where the directed graph has V vertices, E edges and
N spanning trees and α is the inverse Ackerman function.

The Spanned Unfolder

The Spanned Unfolder (Algorithm A.4) converts the input polyhedron P to a
graph G of the face-to-face connectivity of P , generates the set of all spanning
trees of G, and returns that set as the result. Recall that the lower bound on
the number N of spanning trees of G = (V,E) is 2O(

√
‖E‖−‖V ‖) (RT75).

Lemma 4.3 Given a polyhedron P having F faces, E/2 face-to-face connec-
tions and N spanning trees of the graph of all face-to-face connections, where K
is the average time to test a single net of P for overlap, a non-self-intersecting
unfolding of P may be found or determined not to exist in O(K × (N logF +
F 2α(F, F ) + FE)) time.
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1 2 3 4 5

Figure 4.4: The ‘family tree’ of an unfolding of a cube showing how for a given
ordering of the faces of the polyhedron, in constructing partial polyhedra with
border there is an inheritance relationship between some–but not all–of the
unfoldings of each generation.

Proof. By existence of the Spanned Unfolder and Kapoor et al.’s algo-
rithm. Note that E is divided by two in the lemma to support converting every
face-to-face adjacency to two directed edges. �

The Family Tree Unfolder

Consider an n-faced polyhedron Pn, possibly with border. Let Gn be the graph
of face-to-face connectivity of Pn. Let Pn−1 be the polyhedron Pn with a single
face removed, and define Gn−1 in like manner. The Family Tree Unfolder (Al-
gorithm A.5) was inspired by the insight that the set of all spanning trees of Gn
must necessarily include a set of trees which were themselves supersets of each
of the spanning trees of Gn−1. That is to say, all of the possible unfoldings of
Pn−1 are contained within all of the possible unfoldings of Pn.

The Family Tree Unfolder is not, strictly speaking, a new Unfolder. Encap-
sulated within the FTU is the core of the Spanned Unfolder, discussed above.
Instead, the FTU is a visualization tool: it images the relationship between
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successive steps of the unfolding of a polyhedron by modeling each step as a
superset of the set of all spanning trees of the previous step. The resulting
imagery is quite intriguing, forming a disconnected graph in which each node is
a partial unfolding and each edge indicates a subset relationship (Figure 4.4.)

The Family Tree Unfolder first sorts the faces of the polyhedron into a list
using the same sort as the Precomputed Unfolder, producing a list in which
every face is guaranteed to share an edge with another face which precedes it in
the list. From this list of n faces, n polyhedra with border are generated: each
polyhedron Pi consists of only the first i faces of P . The Family Tree Unfolder
runs the algorithm of the Spanned Unfolder on each Pi, generating the set {Ui}
of unfoldings of Pi. Then for each spanning subtree u in {Ui}, the Family Tree
Unfolder searches {Ui−1} seeking the one spanning tree u′ which is a proper
subset of u. This creates a ‘family tree’ of unfoldings (Figure 4.4) showing how
each unfolding either could be built from the previous generation of unfoldings
(less one face) or is an entirely new net which had not been visited before.

4.5 Progressive Unfolders for Convex Polyhedra

A progressive unfolder uses tree search techniques6 to construct an unfolding.
For most of the Unfolders described in this section, the graph G is the graph of
connectivity between the faces of the polyhedron P ; each node of G is a face of
P and each edge of G represents a shared polyhedral edge between the two faces
of P . As G is searched, an unfolded net of P can be progressively constructed.

Two exceptions to this definition of G are the Steepest Ascent Unfolder and
the Star Unfolder, described below. These algorithms construct a cut-graph
edge-by-edge instead of a net face-by-face.

Blind search

Recall that heuristic tree search uses two forms of optimization, pruning and
ordering, to direct its output toward the goal. The first generation of progressive
unfolders apply pruning techniques to filter overlapped partial unfoldings and
use blind searches (depth-first and breadth-first) to construct the unfolded net
from the remaining nodes. This pruning method, in which the partial unfolding
is constructed as the net is calculated and each face considered for gluing to the
partial unfolding is evaluated for overlap before addition, is called implicit error
correction because it acts to passively guide an otherwise blind search.

It should be noted that implicit error correction is much more readily im-
plemented for unfolders which progressively assemble the net of the unfolding,
rather than the cut-graph. As a net is assembled it is relatively easy to test for
overlap. As a cut-graph is assembled, overlap is more difficult to predict. Thus a
blind breadth-first sort, with pruning, will often outperform the more advanced
Star Unfolder which cannot use this technique. In fact breadth-first sort ranks
among the five highest-performing unfolding algorithms on randomly-generated
simplicial convex polyhedra (see Section 4.9, ‘Comparison of Results’.)

6The tree to be searched is actually a graph, but a simple pruning by prior visit allows the
graph to be visited without cycles.
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(a) (b)

Figure 4.5: The breadth-first unfolding of a parametric sphere, shown with the
edges of each node of the search tree (each face of P ) ordered in counterclockwise
order from (a) the lowest first, for lexicographic order; and (b) by order of
instantiation in the test software

Geometric heuristic

The second generation of progressive unfolders uses simple geometric heuristics
to order faces before gluing. Using such information as least height and shortest
path, these unfolders perform well on convex surfaces but generally more poorly
on nonconvex surfaces, which shows that the heuristics chosen emphasize the
traits of convex polyhedra.

Constrained output

The third generation of progressive unfolders works against output constraints
instead of input (source polyhedron) criteria. Such constraints include minimiz-
ing the total area of the convex hull, minimizing the maximum length of paths
between the centers of connected faces in the plane, and minimizing the total
radius of the unfolding.

4.5.1 Ordering the graph

In building the unfolded net by gluing edges in a blind search, an ordering must
be chosen a priori to order the children of each node in G (the list of neighbors
of each face in P .) One such ordering is lexicographic ordering (p. 9.) An-
other is by simple order of instantiation of the faces. Early algorithms chose an
ordering based solely on the order of construction of the original polyhedron,
which yielded irreproducible results which were entirely a function of the imple-
mentation. The lack of clarity arises from the fact that neither the 1-skeleton
of a polyhedron, nor the graph of its face-to-face connectivity, has an implicit
ordering.

The author shifted in time to a lexicographic sort, which is an ordering
independent of implementation. This led to an increase in stability of all al-
gorithms so modified. The degree to which some algorithms were impacted
by such a small change was sometimes quite striking; the before-and-after con-
trast is well-demonstrated by the Breadth-First Unfolder (described below) in
Figure 4.5.
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4.5.2 Blind search progressive unfolders

Breadth-first Unfolder

Breadth-first Unfolder (Algorithm A.6; (Sch97, rule 1, p.39)): Performs a breadth-
first traversal of G, gluing faces to the unfolding across the edge on which they
are first encountered. Implemented by maintaining a queue of faces ‘to be done’
and appending the neighbors of newly-unfolded faces to the tail of the queue.

Depth-first Unfolder

Depth-first Unfolder (Algorithm A.7; (Sch97, rule 2, p.41)): Performs a depth-
first traversal of G, gluing faces to the unfolding across the edge on which they
are first encountered. Implemented by maintaining a queue of faces ‘to be done’
and pushing the first neighbor of each newly-unfolded face onto the head of
the queue. Note that for simplicial convex polyhedra of up to roughly 60 faces
the Depth-first Unfolder actually performs worse than every other algorithm
discussed in this chapter, including completely randomized search.

Breadth/Depth Hybrid Unfolder

Breadth/Depth Hybrid Unfolder (Algorithm A.8): Performs a breadth-first traver-
sal of G but visits all children of a node before expanding the siblings of the
node. This ‘hybrid’ unfolder was originally designed in the expectation of test-
ing depth-limited search and comparing the relative performance of different
limits on depth; the plan was to chart average overlap vs. depth limit on a
series of random polyhedra. This line of research was eventually set aside and
the breadth/depth hybrid algorithm remains fixed at a depth-limited search of
depth 1, embedded within a breadth-first model.

4.5.3 Geometric heuristic progressive unfolders

Least Height Unfolder

Least Height Unfolder (Algorithm A.9): Unfolds the polyhedron by selecting a
starting face and then repeatedly gluing the lowest face in the border of the
unfolding to its lowest neighbor. The resulting geometry tends to to stay close
to curves which are locally geodesic on the surface, giving excellent results on
convex surfaces but ill-suited to nonconvex regions. This method uses implicit
error correction and produces nets which are very similar to Schlickenrieder’s
Steepest Ascent (see below) but with lower overlap rate. When tested against
large suites of randomly-generated convex polyhedra the Least Height Unfolder
outperforms almost every other algorithm discussed in this chapter. It takes
second place only to Collision Repair.

Star Unfolder

Star Unfolder (Algorithm A.10; (Sch97, rule 4, p.48)): Uses Dijkstra’s O(n3)
shortest-path algorithm to find the shortest paths from a point on a chosen face
to every vertex (see Section 2.3.) These paths (with the intra-face cuts removed,
of course) become the cut-graph.
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Steepest Ascent Unfolder

Steepest Ascent Unfolder (Algorithm A.11; (Sch97, rule 7, p.54)): Implements
Schlickenrieder’s Steepest-Ascent algorithm, in which for every vertex v a single
incident edge is cut from v to the highest (greatest y co-ordinate) vertex in the
1-ring of v.

Unravel Unfolder

Unravel Unfolder (Algorithm A.12): The Unravel Unfolder was designed to
test the unfoldability of coolinoids (Chapter 5.) The Unravel Unfolder finds a
Hamiltonian path on the surface, working from the face with the least y value
to the face with the greatest. The nets produced often strongly resemble those
generated by a depth-first search. Two versions of the Unravel Unfolder have
been developed. The one tested here adds a second error-handling pass which
attempts to find another edge to unfold any faces that could not be unfolded in
the first path, which is allowed to break the ‘Hamiltonicity’ of the path.

4.5.4 Progressive unfolders with constrained output

Convex Hull Unfolder

Convex Hull Unfolder (Algorithm A.13): Chooses the next step in the unfolding
which will minimize the area of the convex hull. The resulting cut-graphs are
often chaotic and seem partially random in structure as the convex hull loses
symmetry. This method seeks the local minima of hull area; a global search
would be significantly more expensive. The Convex Hull Unfolder performs
surprisingly well in testing, given that it would seem at first glance to be an
entirely irrelevant feature of the unfolding. Some insight into why this should
be so may be gained from the following observation: 2-local overlap requires
that there be an open gap inside the unfolded net, the ‘lagoon’ of Section 3.4.
Any algorithm which seeks to minimize the area of a convex hull will tend to fill
in these gaps before adding later faces, which will often (though by no means
every time) glue a face inside the gap instead of gluing it into an overlapped
position.

One related side-avenue of research which was not fully explored was a vari-
ant of the Convex Hull Unfolder which sought to minimize the amount of empty
space in the convex hull. The results seen were promising, and seemed to sup-
port the theory about gaps being filled. For larger nets, however, the positive
effects of the change vanished and performance began to suffer, so that variant
of the Unfolder was abandoned.

Path Minimizer Unfolder

Path Minimizer Unfolder (Algorithm A.14): Chooses the next step in the un-
folding which will minimize the length of the longest path in the unfolding.
Length is calculated as total unfolded center-to-center distance in the plane.
This naturally encourages a close-packed, radial arrangement.
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Radius Minimizer Unfolder

Radius Minimizer Unfolder (Algorithm A.15): Chooses the next step in the
unfolding which will minimize the greatest radius of the unfolding. Radius is
calculated as center-to-center distance from each face in the plane to the seed
face. Unfoldings again tend to be radial but with more variation further from
the center of the unfolding than in the Path Minimizer.

4.6 Curvature Unfolders for Non-Convex Poly-
hedra

A third suite of unfolders has explored applying heuristic approaches to curva-
ture data to specifically target non-convex surfaces.

The first generation of non-convex unfolders, the Curvature Ordering Un-
folder (‘COU’), uses curvature data to sort an advancing wavefront of possible
faces. A second generation extended this idea to incorporate explicit traversal of
faces by curvature gradient. The third generation of curvature-aware unfolders
has sought to apply the COU design to multiple regions in parallel.

The philosophy of the Curvature family of Unfolders is to build star-like
unfoldings in regions of positive curvature in the anticipation that by the time
negative curvature is encountered, the faces will have ‘fanned out’ far enough
apart that they cannot self-intersect. For some nonconvex surfaces which would
otherwise be difficult to unfold this philosophy can work well.

4.6.1 Local curvature and angle deficit

Before discussing the curvature-aware family of Unfolders, a few words are ap-
propriate about angle deficit, the means by which that curvature is determined.

In one sense, angle deficit is the perfect measure of curvature at a vertex. In
building a cut-graph it is unambiguously true that a vertex with negative angle
deficit must be cut at least twice, where a positive vertex need only be cut once.

In another sense, angle deficit is a terrible measure of surface curvature. A
strategy built on the concept of ‘regions of positive curvature’ cannot depend on
finding a reasonable description of such regions from the discontinuous sampling
of angle deficits at vertices. Any per-vertex trait can be undermined by closely-
packed sliver polygons; for example, consider the Utah teapot (Figure 4.6.) The
Utah teapot model has a fine line of slim rectangles lining the outer edge of the
lid. In a curvature map of the teapot one sees that the body of the teapot curls
toward the edge of the top and moves toward strong negative angle deficit at
each vertex around the lip, but then the top of the teapot itself has no negative
(red) on it: the strip of rectangles introduces an extra line of vertices and the
negative curvature information is lost.

Thus while angle deficit is still an essential tool in building the unfoldings
described here, it is not a sufficient replacement for more advanced feature
detection techniques.

A second point worthy of discussion when considering angle deficit as a
heuristic for unfolding stems from Polthier’s observations (p. 14.) Angle deficit
is usually not calculated as a simple sum of face angles. That is to say, while the
simplest definition of the angle deficit of a vertex v is AD(v) = 2π −

∑
α(f, v)
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Figure 4.6: A teapot, shaded by angle deficit with negative regions emphasized
in red. A fine ring of slim polygons around the rim of the teapot cause difficulty
when angle deficit is used to find curvature for larger regions of the surface.

(see p. 5), it is common in research to use the smoother function AD(v) =
2π −

∑
α(f, v)/AMixed where AMixed is the Voronoi area of v7 However, in

unfolding, the angle deficit seems to be a primarily binary determining factor:
if it is greater than or equal to zero then the cut-graph may have a leaf at v; if
it is not, then the cut-graph may not. Thus the version of AD(v) used in this
work is the simpler equation.

4.6.2 Curvature Ordering Unfolder

The Curvature Ordering Unfolder (COU) (Figures 4.7, 4.8, 4.9; Algorithm A.16)
is a curvature-aware unfolder. Every face is assigned an “average curvature”, the
average of the curvatures of the vertices of the face. (Vertices on boundaries are
arbitrarily assigned −2π.) The face with the highest curvature is then chosen
as the root of the net and all subsequent unfolding flows from there. At every
pass, the next face to glue onto the net is chosen from the boundary set of the
current net by searching the boundary for the face with the greatest curvature.
This leads to a tree whose branches and leaves decrease in curvature steadily as
they get further from the original root, with the most negative of leaves toward
the extremities.

The design is that negative regions are to be broken up and distributed
across the unfolded plane. As negative curvature on a polyhedron is usually
found fairly far from the positive regions, rooting a partial unfolding amongst
the most positive faces should ensure that faces with negative curvature are not
left together to overlap. Another way of looking at this would be to say that the
cut-graph must begin at the most negative vertices and radiate outwards from

7For details on smooth discrete curvature maps and pseudo-code for finding AMixed for
both acute and obtuse angles the reader is referred to (MDSB02, p.10,12).
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Figure 4.7: A torus, colored by curvature and unfolded by the Curvature Or-
dering Unfolder

there; Curvature Ordering tries to express that key concept, although because
it is a gluing-oriented algorithm the cut-graph is less clearly controlled.

In practice, this tack works quite well on some surfaces but not on others.
If the root face first chosen has positive curvature, then this approach splits
apart zones of negative curvature by laying down the regions that surround
the negative curvature on different strips of joined faces. But this trend is not
guaranteed, because the “most positive” region is not always as far as possible
from the “most negative” region, if distance is measured by the number of faces
and not their breadth. There is no support in this approach for multiple areas
of negative curvature or for finding the best root in a region of uniform positive
curvature. If the entire surface is a region of negative curvature (such as the
spun parabola or coolinoid (see Chapter 5) then this approach splits the regions
that are more negative than others, but must leave some negative region around
the root untouched and therefore ununfoldable.

The real failing here is in the ordering heuristic chosen. The magnitude of
local curvature is not actually relevant; what is important is to split the regions
of negative curvature as widely apart as possible. In other words, to root the
cut-graph in the negative regions. This argument would seem to call for a
cut-graph-oriented implementation instead of a face-gluing implementation.

Ordering the faces based on curvature, and selecting only from the most
positive faces in the current boundary set, are both false assumptions. First of
all, the next-most-positive region may be connected to the current region by a
band of negative curvature. This approach will not cross that band until it has
exhausted all of the positive faces nearby, but multiple positive regions should
all be equally deserving of being roots of the unfolding tree. Second, ordering
based on curvature itself is misleading because it implies a more continuous view
of the surface than is actually correct. In the limit surface approximated by the
polygonal mesh, curvature may change smoothly so that positive regions are
clearly separated from negative regions, but in many low-resolution polygonal
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(a) (b)

(c)

Figure 4.8: A seashell curl, colored by curvature and unfolded by the Curvature
Ordering Unfolder (a) Perspective view (b) View from below on the Y axis (c)
Unfolded

meshes this is not the case.

4.6.3 Tracer Curvature Ordering Unfolder

The Tracer Curvature Ordering Unfolder (TCOU) (Algorithm A.17) is a vari-
ant on the Curvature Ordering Unfolder designed to trace across the gradient
of curvature flow. The TCOU traces connected strips of faces which cut as
perpendicular as possible to the vector of greatest change of angle deficit. This
design is much more well-suited to regions of negative curvature than the COU.

The Tracer was designed during early work on the coolinoid (Chapter 5) and
tends to generate long, spiraling strips of unfolded faces. It suffers from placing
too strong an emphasis on continuity of the trace, making it ill-suited to general
surfaces.

The COU glues faces across edges which follow the diminishing gradient
of curvature, and the COU does well in positive-curvature regions. The TCOU
glues faces across edges which run perpendicular to the gradient of curvature and
does well in negative-curvature regions. Perhaps a hybrid of the two approaches
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Figure 4.9: A peanut, colored by curvature and unfolded by the Curvature
Ordering Unfolder. Note how the Curvature Ordering Unfolder has prioritized
the two positive halves, linking them only with a minimal transit across the
negative band.

(a)

Figure 4.10: The polyhedral model of the cow, shaded with curvature and flow.
Note the negative red shading at each of the major joints and where the ears and
horns meet the head, compared with the positive green shading of the flanks.
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Figure 4.11: The polyhedral model of the cow separated into regions of convexity
after 1st-order smoothing of the angle deficit field.

would work well.

4.6.4 Region Unfolder

The Region Unfolder (Algorithm A.18) expands on the Curvature Ordering
Unfolder by extending it to support multiple parallel rooted unfoldings. At its
core, it is built on the dual assumption that (a) anything convex can be unfolded
and (b) multiple separate unfoldings can be joined together without clashing.
The author recognizes freely that both of these are only suppositions–especially
the second–but nonetheless this algorithm has shown good potential on some
of the simpler non-convex models, such as the peanut (Figure 4.12) and bean
(Figure 4.13.)

Here is a brief overview of the sequence of operation of the Region Unfolder:

1. The surface is separated into distinct regions by positive (R+
i ) and negative

(R−i ) curvature.

2. The shortest paths (Si→j) on the surface between each positive region are
recorded. Note that these paths must necessarily include faces of negative
curvature.

3. Each positive region is independently unfolded to an isolated net, using a
recursive call to another unfolding algorithm (the current implementation
uses a variant on the Least Height Unfolder.)

4. One positive region R+
0 is arbitrarily designated as the ‘root’ of the un-

folding.

5. The faces on the paths S0→i from R+
0 to each of the other positive regions

are progressively glued to the unfolded net of R+
0 until they reach R+

i .
The unfolded net of R+

i is then added to the unfolding, until all positive
regions have been joined into a single unified unfolding U .
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Figure 4.12: The peanut model unfolded by the Region Unfolder. Note the
distinctly separated positive regions, each bordered by the slimmer negative
triangles. The star-like quality of the upper and lower unfoldings is a side-effect
of the border-avoiding unfolding subroutine used for the positive regions.



4.6. CURVATURE UNFOLDERS 133

Figure 4.13: The bean model, unfolded by the Region Unfolder. At the jagged
tips of each branch of the unfolded net are the dividing lines of red and green
which separate positive region from negative. The negative region has been
spread by the advancing wavefront across the entire perimeter of the positive
region.

6. The border set of undeveloped faces around U then becomes the advancing
wavefront of a second unfolding process, adding the negative regions onto
the outer perimeter of the positive.

Clearly there are many assumptions in this sketch of the Region Unfolder,
and terms left ill-defined:

‘Curvature of a face’ This is an inaccurate, but apt, description. An indi-
vidual face of a polyhedron is flat and has zero curvature at every internal
point. Instead what is meant by ‘curvature of a face’ is the average values
of the angle deficits of the vertices of the polygon, as originally designed
for the first-generation Curvature Ordering Unfolder.

Positive Region In the course of development and testing of the Region Un-
folder algorithm, several different definitions of a positive region have been
explored. A positive region R+ is:
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• a connected set of faces all of which have average curvature greater
than or equal to zero. OR,

• a connected set of faces each of which shares an edge with its neighbor
with at least one vertex having positive angle deficit. OR,

• a connected set of faces each of which shares an edge with its neighbor
with both vertices having positive angle deficit. OR,

• a connected set of faces which form the largest possible convex cap
containing the majority of those faces.

In short, a ‘positive region’ is multiply defined. The author has experi-
mented with each of the above, with mixed results. Interestingly, the best
results have come from the last option: finding the largest possible convex
cap which contains the most faces of the polyhedron. For insight into why
this should be so, consider the curve of a sea-shell spiral (an example is
shown in Figure 4.8.) On such a curled surface, faces with positive aver-
age curvature may lie deep within the convex hull of the surface, which
lends less support to the initial assumption that any positive region on a
non-convex surface could unfold without overlap.

Negative Region A negative region R− is easily defined: each connected set
of faces on the polyhedron which do not belong to any positive region
(however positive regions are determined) is a negative region.

Shortest Path Again, several different definitions for this term have been con-
sidered. A shortest path between R+

i and R+
j is:

• the list of connected faces from R+
i to R+

j which has the least number
of elements. OR,

• the list of connected faces from R+
i to R+

j which has the least total
center-to-center distance of adjacent faces on the polygon. OR,

• the list of connected faces from R+
i to R+

j which has the least total
center-to-center distance of adjacent faces in the unfolded plane. OR,

• the list of connected faces from R+
i to R+

j which minimizes some as
yet-to-be-determined energy function (HP04; NGH04)–perhaps re-
lated to curvature?

The current implementation uses the first option. The author has ex-
perimented with the second and third. The fourth remains an extremely
intriguing avenue of future research. In (NGH04) Ni et al. give an acces-
sible introduction to the application of Morse theory to discrete meshes.
Experiments with the other forms of shortest path have not been discour-
aging, but it is appealing to think that Morse theory might offer better
results.

There are two more areas of uncertainty in the design and implementation of
the Region Unfolder: the questions of how, exactly, to unfold the positive regions
and the negative wavefront. In the current implementation, the positive regions
are each unfolded by a ‘border-avoiding unfolder’, a modified version of the Least
Height Unfolder which replaces the Y axis with the axis perpendicular to the
border of the region. Negative regions are unfolded without heuristic, by gluing
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(a) (b)

Figure 4.14: Negative region R− (pink) is surrounded by positive region R+

(blue). Red edges indicate the cut-graph; green arrows show the unfolding net.
(a) Every vertex in R− must be cut and no vertex in R− can be a leaf-node in the
graph. But in this figure, the cut-graph has branched, forcing three leaf vertices;
these guarantee that the unfolding will self-intersect. (b) Here R− is being cut
apart by a gluing which marches inwards from the border. Encountering an
extraordinary face, the net splits and creates an illegal leaf-node on the cut-
graph.

each face in the front to the nearest unfolded face and advancing the front until
all negative faces have been unfolded (or overlapped.) Future experimentation
has room for significant improvement to these subroutines. (Figures 4.12, 4.13.)

The Region Unfolder, in short, is still ‘under development’, and it remains
a promising line of research.

Undevelopable regions of negative curvature

The Region Unfolder depends on its ability to connect positive regions by unfold-
ing across negative regions. It operates on the (not unreasonable) assumption
that each of positive regions will be completely unfoldable, but whether the neg-
ative regions can link the positives together is another matter, often impossible
to prove. A few ground rules can be laid out, however.

Recall that a cut-graph may never have a leaf at a vertex of negative angle
deficit, for this would immediately introduce a 1-local overlap. Now consider
some negative region R−, bounded on all sides by a positive region R+. Clearly,
any branch of the cut-graph which enters R− must leave it again, as it cannot
stop amongst negative vertices. Furthermore it cannot branch unless there
is another edge out for the branch to exit through. Figure 4.14(a) shows an
example of a false branch, where the edges of the cut-graph enter the negative
region but branch before exit, forcing the net to follow an odd U-shaped detour
through the region. This illegal branch leaves three leaf-nodes stranded within
the negative region. This demonstrates that if the number of vertices on the
boundary of R− is k then there can be at most k − 1 branch points on the
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cut-graph within R−.
Consider Figure 4.14(b), in which R− is to be aggressively cut apart, with a

cut edge crossing from each vertex in R+ to each vertex inside R− across every
vertex on the boundary. This is equivalent to a gluing in which all of the faces
on the innermost border of R+ have been separated and spread out across the
plane and now the gluing is moving inwards, contracting into R−. If in the
course of the wavefront’s advance a situation is encountered where there is one
more face than the number of advancing fronts, a leaf node is created in the
cut-graph.

This second example demonstrates how a negative region within a positive
region could still be completely undevelopable. It seems reasonable to hypothe-
size that this case might be detected in software, allowing a well-built algorithm
to declare success impossible without an exhaustive search.

4.7 Evolutionary Unfolders

The algorithms discussed in previous sections have been, in a sense, ‘single-
generation’ algorithms: that is to say, they treat the surface as it is initially
presented, independent of any feedback which might modify the heuristics which
choose the next edge to cut or next face to glue. This last section is devoted to
the techniques which modify the problem as they solve it: methods which alter
the geometry of the polyhedron, or their own heuristics, as they work. Because
each of these methods refines its behavior over time, they are grouped together
as ‘evolutionary’ unfolders.

4.7.1 Pattern-matching and simplification

The following is an idea which will not be addressed in detail in this dissertation,
but it is interesting to consider: one might match a dense surface with many
faces to a known solution for a similar surface with fewer faces. This would
depend on being able to map cut-graphs from one polyhedron to another but
there is some evidence that this should be feasible8. For example, consider
polyhedra which are subdivision surfaces: it seems reasonable to conjecture
that the unfolding of a low-resolution version of the surface would form a basis
of sorts for the unfolding of the same model in high resolution.

Outside of subdivision surfaces, this approach may be untenable. Without
knowledge a priori of a ‘simpler’ surface it would likely be necessary to match
both topological and geometric features against a dictionary of known unfold-
ings, particularly at cusps of curvature and along the boundaries of positive and
negative regions. This would not be trivial to implement: matching on such a
broad scope is a prohibitively difficult task.

4.7.2 Alpha-Beta Unfolder

Section 3.3 details the alpha-beta rules, which use an evolving ordering to dy-
namically sort the vertices of the surface as the cut-path is discovered.

8Personal communications with Joseph O’Rourke, 2008.
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Figure 4.15: The progressive truncation of a dodecahedron

4.7.3 Collision Repair Unfolder

The collision repair algorithm, which iteratively transforms a ‘failed’ net until
it is collision-free, is described in Section 3.4.

4.7.4 Truncation Unfolder

A more viable form of evolutionary unfolder is the progressive refinement of faces
from an initially-simple surface. This is the key idea behind Joseph O’Rourke’s
and the author’s vertex truncation paper (BO07). The proof of vertex truncation
is discussed in detail in Section 2.4 and will not be repeated here. Briefly, the
key theorem of (BO07) is that if a given cut-graph has the open sector property
then the surface can be truncated at any leaf-node of the cut-graph to refine to
a polyhedron with one more face and two more vertices. The new polyhedron
will be known to be unfoldable.

The author has implemented a Truncation Unfolder (Figure 4.15; Algo-
rithm A.19) which expresses the ideas of the truncation argument and, to a
limited degree, extends them. When writing the vertex truncation paper the
goal was to prove that certain classes of convex polyhedra are always unfoldable,
but the truncation method can be applied with reasonable success to broader
classes of convex surfaces which could not be proved recursively unfoldable with
the method used in the proof. For example, surfaces which cannot themselves
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(a) (b)

Figure 4.16: (a) The Random Unfolder, a testing unfolder in the YAMM soft-
ware, shown applied to a dodecahedron. (b) The Manual Unfolder, also used in
testing; the user has changed a cut edge.

be spanned by a binary tree can still be achieved through a series of truncations
which preserve the empty sector property. Figure 4.15 shows the progressive
truncation of a large tetrahedron until it is a dodecahedron, with all unfolding
knowledge intact.

The Truncation Unfolder is, by its very nature, only suitable for unfolding
convex polyhedra. With a more advanced polygon clipping routine it would,
theoretically, be possible to adapt the code to handle nonconvex surfaces. To
do so, however, would prove significantly more challenging.

4.8 Other Unfolders

4.8.1 Random Cut Unfolder

For testing purposes, the Random Cut Unfolder (Figure 4.16(a)) proved invalu-
able for Monte-Carlo style sampling. However, building a truly randomized
unfolder proved to be more challenging than the author had first anticipated.
Early versions of the algorithm would always start from a fixed root face (the
lowest polygon in the polyhedron) because, when iterating visually through a
large number of random unfoldings, a common reference frame is essential. This
had the unexpected result of prejudicing the random series: the root face tended
to be placed roughly centrally to the unfolding. While every possible unfolding
would eventually be generated by this method, they were not all being produced
with equal probability.

Subsequent versions of the Random Unfolder tried various clever ways to
choose a cut-graph at random but it proved difficult to ensure truly random
distribution without having to build in expensive loop-removal tests.

The final version of the Random Unfolder returns to its roots: it achieves a
truly random series of unfoldings by selecting a root face at random each time it
runs and then building a random gluing of faces around that briefly-elected root
face. This guarantees (and has been tested) to produce every possible unfolding
of a surface with uniform probability.
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Simplicial Sphere Trivalent Sphere Implicit Sphere

Parametric Sphere Banded Tetrahedron Banded Icosahedron

Dodecahedron Dome

Figure 4.17: Convex Test Surfaces

4.8.2 Manual Unfolder

No dictionary of unfolders would be complete without this humble testing tool:
the Manual Unfolder (Figure 4.16(b)) which allows a user to graphically edit the
cut-graph on the 3D model of the polyhedron and watch the unfolding change
‘live’. It has been invaluable in discussion and for finding counterexamples
during the author’s work.

4.9 Comparison of Results

How do the progressive unfolders compare against each other?
The algorithms were tested on a suite of polyhedra chosen for feature variety

and difficulty of unfolding (Figures 4.17 and 4.18.) The non-convex models were
deliberately chosen of sufficient complexity that no algorithm would be likely to
unfold one correctly ‘by accident’. The test models used are listed in Table 4.4.

The algorithms were also exhaustively tested against roughly 200,000 randomly-
generated simplicial convex polyhedra, ranging from 4 faces to 300 faces.
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Torus Twisted Torus Duck

Peanut Bean

Teapot Cow

Figure 4.18: Non-Convex Test Surfaces
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Convex: Non-convex:
Dodecahedron 12 faces Torus 676 faces
Banded Tetrahedron 28 faces Peanut 676 faces
Dome 41 faces Bean 1089 faces
Banded icosahedron 140 faces Utah Teapot 1269 faces
Parametric sphere 144 faces Twisted torus 1352 faces
Simplicial sphere 288 faces Duck 1998 faces
Trivalent sphere 652 faces Cow 5804 faces
Implicit sphere 2312 faces

Table 4.4: Test models

Torus
Unfolder Score Peanut (Twisted) Torus Bean Duck Teapot Cow

Curvature 89.69 100 100 100 98.9 90.44 70.3 68.19
Region 84.62 100 100 100 100 83.28 54.28 54.79

Least Height 84.15 100 83.95 93.49 100 84.98 63.4 63.23
Breadth First 77.95 100 74.78 86.39 95.87 72.72 80.25 35.63

Tracer 73.47 74.7 100 53.25 87.14 76.78 66.02 56.41
Avg Success 80 60 40 40 0 0 0

Table 4.5: Non-convex tests: percentage of faces per model unfolded without
overlap

The Breadth-first, Depth-first, and Least Height Unfolders were also tested
with their implicit error correction disabled, for comparison. The difference in
performance between the two versions of each of these three unfolders is quite
noticeable.

Of the algorithms investigated, three stand out above the rest: the Alpha-
Beta Unfolder (Section 3.3), Collision Repair (Section 3.4) and the Least Height
Unfolder (Section 4.5.3.) Each of these, Collision Repair above all, is a candidate
for the hypothetical ‘perfect unfolder’, the algorithm which by its existence and
its inability to fail proves that all convex polyhedra are unfoldable. However, it
must be understood that statistical evidence is not a proof.

Tables 4.5 and 4.6 are organized as follows: a column of Unfolders is con-
trasted against a row of unfolding tests. Where row and column meet, the table
shows the percentage of faces which were not overlapped in that Unfolder’s
unfolding of that test. The Unfolders are sorted top-to-bottom in descending
order of ‘Score’, which shows the average rate of overlap-free faces per Unfolder.
(This average is weighted by the unfolding, not by the number of faces per un-
folding.) The test models are also sorted left-to-right in descending order of
average ‘Success’, i.e., the percentage of tests which were able to unfold the test
without overlap.

From Table 4.6 it is clear that the Alpha-Beta, Collision Repair, Breadth
First and Path Minimizer Unfolders performed best on the chosen convex test
models. Amongst the non-convex Unfolders, Curvature Ordering outperformed
all others.

Figure 4.19 on page 141, shows the relative performance of each of the pro-
gressive (convex-surface-oriented) Unfolders on large sets of randomly-generated
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simplicial convex polyhedra. This chart is interesting for several reasons. It
clearly places Alpha-Beta, Least Height and Collision Repair at the head of the
class for random polyhedra; all three functions follow straight lines at the top
of the chart while others die away as polygon face count increases. The yellow
curve tracks the Random Unfolder, and (comfortingly) the odds of the Random
Unfolder unfolding a polyhedron without overlap drop off along the same curve
as that found by Schevon in (O’R00). Interestingly, the Depth-first Unfolder
actually under-performs the Random Unfolder for polyhedra of up to roughly
60 faces.

4.10 Conclusions

This chapter has introduced a number of implementations of unfolding algo-
rithms, ranging from brute-force and simple heuristic solutions to curvature-
based and evolutionary techniques. A comparison of the performance of the
various Unfolders has been presented. The reader has been introduced to con-
cepts such as implicit error correction and the classification of Unfolders by their
decision basis.

The Region Unfolder has been introduced and some positive results for this
curvature-aware unfolder of nonconvex surfaces have been outlined. However,
the Region Unfolder is clearly still a very young line of research and much more
work will be required before it is of practical use.

One excellent direction for future research would be to combine Collision
Repair with the Region Unfolder. It would be necessary to adapt Collision
Repair to support 1-local overlap.

Testing has shown that the Collision Repair, Alpha-Beta, Breadth-first,
Least Height and Path Minimizer Unfolders outperform all others, with Col-
lision Repair leading the pack. If none of these methods is actually perfect then
they are certainly on the right path.



Chapter 5

Unfolding the Coolinoid

5.1 Introduction

It is known that there are convex polyhedra which are unfoldable but which
can be unfolded to overlap, such as Fukuda’s tetrahedron (Figure 1.5, page 13.)
It is also known that there are nonconvex polyhedra which can never be edge-
unfolded, such as the Witch’s Hat assembly (Figure 1.6, page 14.) But there
has been little research into the class of surfaces which lies between these two
negative results: the developable nonconvex polyhedra.

This chapter reproduces the paper A Developable Surface of Uniformly Neg-
ative Internal Angle Deficit presented by the author at Mathematics of Surfaces
XII, 2007 (Ben07). It discusses the coolinoids, a class of nonconvex polyhedra
with negative curvature at every vertex which is partially developable.

This chapter extends the original paper with a proof that the coolinoid must
be unfolded with the spiral unfolder (Section 5.4), which was left as a supposition
in the original work.

5.2 Cycles in the Cut-Graph, Angle Deficit and
Developability

By definition, the unfolding tree cannot possess cycles and must be connected.
The cut graph may possess cycles; the circumstances in which this is permitted
may be bounded explicitly:

Lemma 5.1 The presence of a loop in the cut graph requires that there be at
least one handle in the topology of the polyhedron.

Proof. A loop in the cut-graph of the surface forms a Jordan curve on the
surface which separates any locally <2 surface into exactly two discrete com-
ponents1. If the source mesh is without handle (locally <2) then the unfolding
tree will be broken into two parts. Therefore either the surface must have a

1From (Gri76), Appendix A.2, p.95. Griffiths does not prove this theorem directly, instead
citing Newman’s Elements of the Topology of Plane Sets of Points, Cambridge University
Press, London (1954), p. 137.

145
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Figure 5.1: Positive curvature: edge cuts terminate at inner vertices

handle which connects the faces within the loop to the faces outside the loop;
or, the cut-graph cannot loop. �

Corollary 5.2 The formation of a loop in taking the union of the cut graph
with the set of all boundary edges of the polyhedron requires that there be at least
one handle in the topology of the source mesh.

Proof. Boundary edges, like cut edges, have no dual in the unfolding tree.
Loops in the (potentially disjoint) graph of boundary edges are permissible but,
as in Lemma 5.1, new loops may not be introduced in taking the union of the
cut graph and the boundary graph on a simply-connected surface. To do so
would separate the surface into two or more disjoint parts as above. �

Recall from (Pol03) that at every spherical vertex there need be only one
incident cut edge but that at every hyperbolic vertex at least two incident edges
must be cut. This gives the following lemma:

Lemma 5.3 No simply-connected surface of uniformly negative internal angle
deficit is developable.

Proof. Suppose that there exists a simply-connected surface of uniformly
negative internal angle deficit which is developable. To generate the unfolding, a
cut graph must exist. This graph cannot loop, as the surface is simply connected;
likewise, it may contain at most one vertex which lies on a boundary edge of the
surface . If the graph does not loop then it must have at least two leaf nodes,
where the edges of the cut graph originate and terminate, but all vertices have
negative curvature. Therefore no such surface may exist. �

Corollary 5.4 The number of branches in the cut-tree which develops a mesh
of uniformly negative internal angle deficit cannot exceed B − 2, where B is the
number of distinct boundary curves on the mesh.

Proof. The number of leaf nodes of a tree is two plus the sum of the
valence minus one of each branch node in the tree. Thus each branch raises the
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Figure 5.2: Coolinoid

required number of boundary curves by one. As above, there must be at most
one leaf node per boundary curve and no leaf node may not fall on a boundary
curve. �

Corollary 5.5 The (topologically) simplest developable surface of uniformly
negative internal angle deficit has at least two boundary curves.

Proof. It would be impossible for a graph to have −1 branch points. �

5.3 A Developable Surface of Uniformly Nega-
tive Internal Angle Deficit

A coolinoid2 is the surface of rotation obtained by rotating a polynomial f(t) =
tk + 1 about the t axis. To obtain a discrete representation, the following
parametric description is used:

for (u:=0 to 1 step 1/du)
for (v:=-1 to 1 step 2/dv)
{
x = cos(2\pi * u) * (pow(v,k)+1);
y = v * h;
z = sin(2\pi * u) * (pow(v,k)+1);

}

where k ≥ 1 and h > 0. The model shown in Figure 5.2 was generated from
(h = 10.0, k = 2.2, du = 25, dv = 25). Informally, h may be thought of as the
‘stretch’ of the model, k may be seen as the ‘curviness’ of the model and du and
dv are the ‘resolution’ of the mesh.

Many surfaces whose internal angle deficit is negative at every vertex are
not developable, and several examples of such surfaces are shown in Figure 5.4.
However, there exist configurations of the coolinoid which are developable. The
model shown in Figure 5.2 unfolds into the spiraling net shown in Figure 5.3.
The net has no self-intersection and is completely planar.

This demonstrates that
2so named for its resemblance to the cooling tower of a power plant
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Figure 5.3: Spiral unfolding of a coolinoid (h = 10.0, k = 2.2, du = 25, dv = 25.)
Inset: The spiral unfolding in progress.
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Figure 5.4: Developability is dependent on construction. Here k is fixed at 2.25,
du and dv are fixed at 25, and h = 1.2, h = 3.2, h = 6.2 and h = 9.2. Only
h = 9.2 is developable (blue faces have been unfolded.)

Theorem 5.6 There exists a connected surface of uniformly negative internal
angle deficit which is developable.

Proof. By example (Figure 5.3.)
Note: Numerical verification that the model shown in Figure 5.3 has no self-

intersection may be obtained by verifying that Equations 1 and 2, below, have
no common solution for h = 10.0, k = 2.2, du = 25, dv = 25. �

5.4 Spiral Unfolding

Corollary 5.4 allowed restriction of development to linear stripping heuristics:
as there can be no inner branch, the unfolding must be a Hamiltonian path.
Furthermore it must be a Hamiltonian path which never generates a leaf-node
on the graph of its border, a very limiting constraint. The only Unfolder which
meets these criteria is the Unravel Unfolder (Section 4.5.3), which peels the
model in a spiraling strip of consecutive faces ordered by adjacency in a coun-
terclockwise traversal about the positive Y axis and then by ascending Y value.

Lemma 5.7 Any coolinoid which can be unfolded and which is not exactly a
cylinder, can only be unwrapped by a strip which spirals around the axis of the
coolinoid.

Proof. The solution cannot branch, therefore only stripping solutions are
considered. For discussion purposes, assume that the strip is oriented, beginning
on the lower boundary of the coolinoid and proceeding upwards and to the right;
all arguments hold from the top down or from right to left. The strip must travel
from row one to row dv.
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(a) (b)

Figure 5.5: Rule 1 : The strip can never pass through two adjacent faces in
opposite directions.

Rule 1 : The strip can never pass through two adjacent faces in opposite
directions.

Proof. To do so would either result in a leaf-node of the cut-graph (Fig-
ure 5.5(a)) or faces trapped in a loop (Figure 5.5(b)).

—
Rules 2 : The strip must travel the length of each row before proceeding to

the next one.
Proof. The strip enters the grid of the faces of the coolinoid at some entry

face a on row one of the grid. From there it proceeds to the right along k faces
before turning upwards at face b (Figure 5.6(a).)

Assume that k < du. Then the strip leaves row one at point b and must
later return at some point c (Figure 5.6(b).) By Rule 1, c cannot be adjacent
to a or b: it is moving upwards as it enters a and leaves b but the strip travels
downwards as it enters c. There are then four possibilities:

1. Figure 5.6(c): The path returns to row one and forms a loop, trapping
faces between b and c. The path cannot branch therefore these faces would
remain inaccessible and never be unfolded. If there were no faces inside
the loop then the loop would necessarily contain (at least one) leaf-node
of the cut-graph. Therefore the path cannot reach c from the left and then
turn to the right.

2. Figure 5.6(d): The path returns to row one and curls inwards, trapping
itself between faces b and c. The path cannot branch or cross itself and so
the tip of the path would be trapped inside the curl, unable to reach the
top row of the coolinoid. Therefore the path cannot reach c from the left
and then turn to the left.

3. Figure 5.6(e): The path loops around the cylinder of the coolinoid before
reaching c, then traps faces within a loop as it travels toward b. As in case
1, the trapped faces could never be unfolded. Therefore the path cannot
reach c from the right and then turn to the right.

4. Figure 5.6(f): The path loops around the cylinder of the coolinoid before
reaching c, then curls to the right. As in case 2, the head of the strip
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Rule 2 : The strip must travel the length of each row before pro-
ceeding to the next one.

would be trapped within its own loop, unable to reach the top row of the
coolinoid. Therefore the path cannot reach c from the right and then turn
to the left.

With all four possibilities invalid, the assumption k < du must be discarded.
Therefore k = du and the strip fills all of each row before moving on to the next
row.

—
Rule 3 : The strip cannot zig-zag.
Proof. By rule 2 the strip must complete all of row one before advancing

to row two. Assume that it travels left-to-right to fill row one, then at the last
cell of row one it steps up to row two. At this first cell on row two it cannot
turn back to travel to the left: doing so would violate rule 1. Therefore it must
continue onwards to the right, wrapping around the cylinder.

—
Thus by rules 1, 2 and 3 the strip must spiral around the coolinoid. No other

unfolding is possible. �
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Figure 5.7: Rule 3 : The strip cannot zig-zag.

5.5 A Black-Box Solution for Determining the
Unfoldability of a Coolinoid

The observation that developability of the coolinoid varied as a function of
h, k, du, dv spurred the development of a ‘black-box’ solution which could
determine a priori whether a given coolinoid model could be unfolded. Note
that for general non-convex polyhedra, there exists no known method faster
than exhaustive sampling for determining unfoldability.

Unwrapping a single row of faces from a coolinoid generates a curved arch of
trapezoids which does not self-intersect; the flattened strip could never complete
a full circle unless it already was one (which is the special case of the inner core
of a torus, and undevelopable.) Each subsequent row, unrolled into a strip
attached to the last face of the previous strip, will have less curve than the
previous row until the unwrapping crosses the vertical midplane, after which
the curved arch of each row will wrap symmetrically in the opposite direction.
This creates a smooth spiral which unravels to a straight line and then curls
back into another spiral.

However, not all coolinoids can be spirally unfolded. The shared edge of the
last face of a row i and the first face of row i+1 is the edge which lies inside the
curl of the spiral; this moves each row inwards, toward the center of the spiral,
by the height of the row. For many coolinoids this inwards step introduces a
subsequent conflict between two rows, as shown in Figure 5.4(a-c).

5.5.1 A functional expression of the unfolding of a cooli-
noid

The curve of the lower and upper borders of the spiral unfoldings of the faces
of a coolinoid can be expressed as functions of a single linear parameter.
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Figure 5.8: Spiral unfolding with conflict in the second row

Taking h, k, du and dv as constants, define:

P (u, v) =
[(

cos
2πu
du

)(
| 2v
dv − 1

|k + 1
)
,

2vh
dv − 1

,

(
sin

2πu
du

)(
| 2v
dv − 1

|k + 1
)]

Up(v) = P (0, v + 1)− P (0, v)
Over(v) = P (1, v)− P (0, v)

α(v) = cos−1

(
Up(v)
‖Up(v)‖

· Over(v)
‖Over(v)‖

)
β(v) = π − 2α(v)

where

• P (u, v) is the Coolinoid function. u, v range from 0 to du− 1 and dv− 1,
respectively.

• Up(v) is the step from the ‘bottom’ of row v to the ‘top’ of row v.

• Over(v) is the step from one vertex at the bottom of row v to the next
vertex in the row, ordering the vertices in a clockwise direction up the
positive Y axis.
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Figure 5.9: Terminology used in the functional expression of a coolinoid unfold-
ing

• α(v) is the acute inner angle of the trapezoidal faces of row v.

• β(v) is the angle by which the unwrapping of row v will ‘curl’ in the plane
at each face.

These symbols are shown in place in Figure 5.9.
Caution: this use of α and β is not to be confused with the unrelated

overloading of these symbols in the alpha-beta rules of Chapter 3.
The following functions are then defined:

Turn(v) =
v∑

lvl=0

(du− 1) ∗ β [lvl]

Hop(v, θ) = ‖Up(v)‖ [cos(θ), sin(θ)]
Skip(v, θ) = ‖Over(v)‖ [cos(θ), sin(θ)]
Jump(u, v) = Hop(v − 1, (Turn(v − 1) + α(v − 1) + β(v − 1))) +

u∑
i=1

Skip(v, Turn(v − 1) + i ∗ β(v))

Outer(u, v) = Jump(u, v) +
v−1∑
lvl=0

Jump(du− 1, lvl)

Inner(u, v) = Outer(u, v) +Hop(v, Turn(v − 1) + α(v) + (u+ 1) ∗ β(v)) +
bu/(du− 1)c ∗ (Hop(v + 1, Turn(v) + α(v + 1))− Skip(v + 1, Turn(v)))

such that
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(a) (b)

Figure 5.10: (a) An unfolding (b) The same unfolding evaluated in
MathematicaTM

• Turn(v) is the total curl introduced by the unwrapping of row v.

• Hop(v, θ) gives the vector Up() rotated by θ.

• Skip(v, θ) gives the vector Over() rotated by θ.

• Jump(u, v) gives the offset of the unwrapping of the first u faces of row v.

• Outer(u, v) gives the position of the lower right corner of the unwrapping
of the first v − 1 rows and the first u faces of the vth row.

• Inner(u, v) gives the position of the upper right corner of the same faces as
Outer(u, v). The construction of b u

du−1c is designed to shift the function
back one face, allowing the first face of each row to share its lower edge
with the last face of the row preceding.

The functions Outer() and Inner() are now defined over the range {u, v} ∈
{[0 . . . du− 1] , [0 . . . dv − 1]} with u and v both held integer.

The unraveling unfolding evaluates these functions in a linear progression.
Encapsulating this linear progression as

OuterRing(t) = Outer(btcmod(du), bt/duc)
InnerRing(t) = Inner(btcmod(du), bt/duc)

yields two univariate equations whose solution(s), if they exist, are the loci of
intersection of the outer and inner border of the unfolding (Figure 5.10.) Testing
for the unfoldability of a coolinoid is now reduced to solving for the intersection
of these two equations.

5.6 Developability of the Coolinoid

As mesh resolution increases, the odds of the mesh being unfoldable decrease
(Figure 5.11) echoing similar results gathered by J O’Rourke in Figure 2 of
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Figure 5.11: Overlap vs Dimension

(O’R00). The data shown in Figure 5.11 was gathered by taking the average
developability over the range {h, k} ∈ {[0.5 . . . 14.75] , [0 . . . 10]} for each integer
value of dim in the range [3 . . . 78], setting du = dv = dim.

Evaluating the developability of coolinoids continuously over the domain
given above, an implicit surface is generated (Figure 5.12.) The surface shows
extremely intriguing behavior. Predictably, it displays interleaved shelving
effects in some areas, highlighting regions of {h, k, dim} space where parity
(odd/even) of the mesh dimension has an effect on the developability; this is
most readily visible where k < 1. Such liminal regions are common in such sur-
faces. More interestingly, an evolving wave pattern–hinting at fractal behavior–
begins to appear in the isosurface as dimension increases. The wave hints at a
much more complex isosurface than might be expected. Other ranges of sym-
metric and asymmetric behavior appear throughout the surface; further study
is warranted.

In figure 5.12 the isosurface is shown looking from up the positive h axis.
The positive k axis travels left-to-right and dim travels from the image’s bottom
to top. Note that the dim axis is integer, creating a voxel-like shelving effect
(the 75 shelves in Figure 5.12) along the vertical axis.

Figure 5.13(a) shows the isosurface from the side, looking down the positive
k axis toward the origin.

Figure 5.13(b) shows a detail of the lower h, k values. Note the interleaved
parity-sensitive structure close to the origin in the k ≤ 1 region, followed by a
deep trough of undevelopability in the range 1 ≤ k ≤ 2.

Figure 5.13(c) shows an overhead view, looking down on the surface from
the h axis. Note the wave pattern along the topmost border of the isosurface.

Figure 5.13(d) shows the isosurface from above, looking directly down the
positive dim axis. The wave in the isosurface is clearly visible.
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Figure 5.12: Coolinoid unfoldability represented as an implicit surface in
{h, k, dim}
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(a) (b)

(c) (d)

Figure 5.13: Coolinoid unfoldability represented as an implicit surface in
{h, k, dim}
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5.7 Future Work

The coolinoid is very similar to functions such as x2 + y2 − z2 = 1 and the
Catenoid. Analysis comparable to that performed above would be quite in-
structive. The techniques demonstrated will apply to any surface which may be
unfolded by the spiral unfolder.

The wave function which emerges in the upper ranges (dim → 50+) of
the coolinoid unfoldability isosurface displays fascinating fractal behavior which
calls for ongoing investigation. Joseph O’Rourke has suggested3 that the wave
is an artifact of the stepwise nature of the integer dim field in conjunction with
h, a progression already becoming visible in Figure 5.4 a-d.

The interleaving effects for low-resolution models (Figure 5.13b, lower left)
decay as dim rises. Does that decay flatten fully, or is it re-expressed at higher
resolutions in the much subtler interleaved effects that appear at higher values
of h?

In the isosurface shown, it was assumed that du = dv. It would be very
interesting to decouple these two fields, plotting a four-dimensional isosurface,
substituting one of the four axes for time and animating the evolution of the
wave.

5.8 Conclusions

It has been shown that simply-connected surfaces of negative interior curvature
cannot be unfolded. An example has been given of a developable surface of
negative interior curvature with two boundary curves: the coolinoid. A black-
box solution for determining the unfoldability of any given coolinoid has been
found and further analysis of the developability of the coolinoid has yielded
startlingly complex and intriguing results.

3Personal communications, February 2007
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Chapter 6

Conclusions

This dissertation began with two questions, and while neither question has been
answered to the author’s satisfaction, significant strides have been made in both
areas. It is the author’s sincere hope that the material which has been presented
here will be of use to future researchers.

6.1 Can it be shown that all convex polyhedra
can be edge-unfolded?

The quest continues for the proof that all convex polyhedra are unfoldable,
or the counterexample of the undevelopable polyhedron. A number of new
contributions have been made in both of these directions.

A series of negative results have been presented on unfolding convex poly-
hedra, including the following:

• Many convex polyhedra have at least one unfolding which contains overlap,
but every convex polyhedron seen thus far has at least one overlap-free
development;

• Unfolding along the shortest edge-paths from a common point (that is
to say, unfolding in the same manner as the general Star Unfolding) will
often avoid overlap, but not always;

• Unfolding on an open convex curve will not always avoid overlap

The technique of cut-tree truncation has been introduced. Cut-tree trunca-
tion allows the description of broad classes of unfoldable convex polyhedra, if
they can be derived by degree-3 leaf truncation from a seed polyhedron which
has the open sector property. Cut-tree truncation has been used to show that
the domes, a class of convex polyhedra, are unfoldable.

It has been shown that, just as it is possible to show that classes of polyhedra
are unfoldable, it is also possible to show that classes of cut-graph will always
unfold their targets without overlap, provided that they can be constructed.
One such example is the locally-convex cut-graph. Several counterexamples have
been given of polyhedra which cannot be spanned by a locally-convex cut-graph
but the proof holds despite these limitations; it even leads to a second proof of
the unfoldability of the domes.

161
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Another such class of algorithmically-driven net and cut-graph is the An-
chorable Convex Hull, an early foray into unfolding proofs. While the ACH
is limited in application to only a few classes of convex polyhedra, specifically
those which can be spanned by closed convex curves, it has nonetheless inspired
several subsequent directions of research.

In support of the hunt for the undevelopable polyhedron, the technique of
polyhedral banding has been formally introduced, analyzed and discussed as a
tool in aid of future research. It has been shown that the class of banded geodesic
spheres are ‘provably hard’ to unfold, making them excellent candidates for the
testing of unfolding algorithms.

On a related note the reader has been introduced to an idea for a proof in the
style of Euclid, which seeks to show that there can be no smallest ununfoldable
polyhedron (and therefore no ununfoldable polyhedra at all.) Although the
first proposed structure for this proof has been rebutted, the concept behind it
remains entirely sound.

Two other ideas for proofs have also been proposed:

• The alpha-beta rules seem to hold almost a complete proof, though several
barriers do remain. They are also well-supported by testing evidence.

• Collision repair, a second idea which could become a complete proof, lacks
theoretical backing; it is extremely well-supported by testing evidence but
the precise mechanism of its success is not yet fully understood.

Both of these ideas are strongly deserving of future research.

6.2 How can an arbitrary polyhedron be edge-
unfolded?

The reader has been introduced to the Unfolders, a suite of algorithms which can
unfold a surface. Different methods of classifying and co-ordinating Unfolders
have been explored. The largest differentiation has been between those specific
to nonconvex surfaces, those specific to closed convex polyhedra, and those
without specialization. Unfolders have also been divided into those which draw
on heuristic knowledge of polyhedra, explicitly or implicitly, to build a net or
cut-graph, versus those which operate completely independently of the source
geometry. They may also be categorized by their decision class–the mechanism
by which they choose their next step.

To address the issue of the unfolding of nonconvex polyhedra the Curvature
Unfolder and its direct descendant the Region Unfolder have been introduced.
In a problem space where failure is known to be possible it is difficult to say
that these new algorithms are ‘better’ than their unspecialized peers; but sim-
ple sample models such as the curl, bean and peanut all show that these new
methods do contain useful advances. Furthermore the Region Unfolder has also
served to introduce and begin to formalize the concept of negative and posi-
tive regions, and the possibility of using knowledge of such regions to quickly
negatively determine a surface’s unfoldability.

Many of the available Unfolders have been compared side-by-side, and several–
the Collision Detection, Alpha-Beta and Least Height Unfolders, above all
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others–have shown remarkably positive results. While statistics are no sub-
stitute for a robust proof of correctness, there can be no question that these are
now, in one researcher’s words, “the algorithm to beat.”

6.3 Explorations of Interest: The Coolinoid

The reader has been introduced to the coolinoid, a developable surface of nega-
tive interior angle deficit with two boundary curves. The coolinoid is noteworthy
because it is topologically the simplest such surface possible; no surface with
fewer boundaries and uniformly negative interior curvature can be unfoldable.
It is also noteworthy for the subtle patterns in its developability, which can
produce fascinatingly fractal results when modeled with an isosurface.

In a new proof, it has been shown that the only possible algorithm for
unfolding a coolinoid is a spiral strip.

6.4 Final Thoughts

Throughout this research the author has used a number of models, including
scanned surfaces. One surface, in particular, became somewhat iconic for the
author, both for its humor value and for its difficult combination of positive
and negative curvature. This motivating surface has driven much of the work
presented here.

Despite the progress made, a question which was asked three years ago still
remains open today: is a cow unfoldable?



164 CHAPTER 6. CONCLUSIONS



Appendix A

Unfolding Algorithms

Notes:
Pseudocode is not a typed language and so variable type must be inferred

from initialization of a name. Notation in these algorithms distinguishes initial-
ization (←) from assignment (=, +=, ×=, etc).

The operator ‘++’ is taken from the C programming language. An expres-
sion of the form (+ + i) should be read as, ‘i is incremented and the value of
i’ is returned. An expression of the form (i + +) should be read as, ‘the value
of i is stored in a temporary location, i is incremented, and the temporary is
returned.’

The conditional operator ‘?:’ is also borrowed from C. An expression of the
form (A?B : C) should be read as, ‘if (A) then return B else return C’.

The component operator ‘.’ is borrowed from C++. An expression of the
form A.B should be read as ‘the B of A’. For example, f.center would be the
center of face f ; v.normalized() would be the unit-length vector in the direction
of vector v.

Lower-case names are used for geometric primitives. For example, f is often
used for a face and e for an edge.

Exceptional geometric primitives, names which maintain a constant value
throughout the course of an algorithm, are named with capital letters. For
example, FB is used by several algorithms to denote ‘the lowest face in the
polyhedron, sorting faces lexicographically with the Y axis primary.’

Capital names are used for larger data structures. Common names include:

• T indicates a tree

• G indicates a graph

• P names the input polyhedron

• U indicates an unfolded net

Values in {curly braces} are values in a list. The empty list is ∅.
Values in <angle brackets> indicate an ordered data structure.
An array is indicated with [square brackets]. For example, A[i] names the

ith element in array A.
Addition of edges to trees or graphs is indicated with the ‘+=’ operator and a

directed (for trees) or undirected (for graphs) pair. For example, T+= (A→ B)
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would add the directed edge AB to tree T ; A must be in T . G+= (A ↔ B)
would add the undirected edge AB to graph G; if A and B are not already in
G, the edge is still added and the graph is now disconnected.

Subroutines names are written in typewriter font when a subroutine is de-
clared or called. Subroutine names are usually one or more English words
with each first letter capitalized. For example, HeuristicMinimizer(P , FB ,
Score()) declares a function HeuristicMinimizer which takes three param-
eters, the third of which is itself a pointer to a function variable. Where a
subroutine is used without having been defined, the function of the subroutine
is to be inferred from context.

A few common subroutines are:

• NumEdges(f)→ the number of edges in face f

• GetNeighbor(f, i) → the ith neighbor of face f (index order is assumed
to be lexicographic unless stated otherwise.)

• Copy(X)→ a new instance of identical type and value to X

The Total Unfolder

In the Total Unfolder algorithm, W is the tree of all orderings of all unfoldings.
Each node w =< U,L > of W consists of an unfolding net U and a list L of
available edges to which a new face may be glued. For a given node w in W ,
for a given edge e in w.L, Fe is the face incident to edge e which is not in the
unfolding net w.U .

Algorithm A.1: The Total Unfolder

1: FB ← root face
2: W ← a tree of a single node, whose value is the pair < FB , {the edges

of FB} >
3: for each w ∈W do
4: for each edge e ∈ w.L‖Fe /∈ w.U do
5: l← {the new edges of Fe}
6: W+= (w →< w.U + Fe, w.L− e+ l >)
7: end for
8: end for

The Precomputed Unfolder

The Precomputed Unfolder builds up a sparse array A of unfolding nets. Each
net is represented as a graph of faces; faces which share an edge in a graph will
share a developed edge in the corresponding unfolded net. Note that all non-∅
graphs are guaranteed to have no loops or be disconnected and are therefore
actually undirected trees.
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Algorithm A.2: The Precomputed Unfolder

1: L← an ordered list of the faces of P such that every face in the ordering
shares an edge with some previous face in L.

2: num← 1
3: max←

∏
f∈L

(NumEdges(f))

4: A← an array of max graphs
5: for all f ∈ L do
6: for j = 1 to NumEdges(f) do
7: for k = 0 to num do
8: A[j × num+ k] = (A[k] 6= ∅?Copy(A[k]) : ∅)
9: end for

10: end for
11: num ×= NumEdges(f)
12: for j = 0 to NumEdges(f) do
13: fj ← GetNeighbor(f, j)
14: for k = 0 to num do
15: if f ↔ fj /∈ A[k] then
16: if f . . .↔ . . . fj /∈ A[k] then
17: A[k]+= (f ↔ fj)
18: else
19: A[k] = ∅
20: end if
21: end if
22: end for
23: end for
24: end for

The Iterative Unfolder

The Iterative Unfolder builds up a list L of graphs, each of which corresponds
to a unique unfolded net. It does so by storing what is essential an arbitrary-
length, variable-base integer in the array named INDEX and mapping each
value of this extended integer to a unique possible unfolded net. The array
INDEX therefore has n elements (where n is the number of faces in P ).

The subroutine Inc increments an extended integer array by one. It does
so by cascading incrementation of the integers in INDEX, exactly like binary
addition, except that where binary addition always wraps a digit at 2, Inc wraps
the jth digit at the number of faces of the jth face.

The subroutine MakeUnfolding converts an extended integer into a graph of
face-to-face connectivity, which represents a possible unfolded net. This graph
may contain loops and my be disconnected. The graph is assembled by using
the value of each ‘digit’ of the extended integer INDEX as the index of the
edge by which to glue the corresponding face to the net.
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Subroutine 1: Inc(INDEX)

1: j ← 0
2: INDEX[j]++
3: while INDEX[j] = NumEdges(fj) do
4: INDEX[j] = 0
5: INDEX[+ + j]++
6: end while

Subroutine 2: MakeUnfolding(INDEX)

1: G← ∅
2: for i = 0 to n do
3: f ← the ith face of P
4: k ← INDEX[i]
5: G+= f ↔ GetNeighbor(f, k)
6: end for
7: return G

Algorithm A.3: The Iterative Unfolder

1: FB ← the lowest face of P
2: L← ∅
3: INDEX ← an array of n integers, initialized to zero
4: repeat
5: repeat
6: Inc(INDEX)
7: G = MakeUnfolding(INDEX)
8: until G does not loop and is connected
9: L+= G

10: until INDEX overflows

The Spanned Unfolder

To put it simply, the Spanned Unfolder generates every spanning tree of the faces
of P using somebody else’s solution. That is to say, algorithms to enumerate
spanning trees are an active field of ongoing research; the Spanned Unfolder
uses the current best such solution as a ‘black box’ solution finder, and returns
the result as a list L of graphs which map to valid unfolded nets.

Algorithm A.4: The Spanned Unfolder

1: G← the graph of face-to-face connectivity of P
2: L← {all spanning trees of G}

The Family Tree Unfolder

The Family Tree Unfolder chooses an ordering of the faces of P and then, as
i goes from 1 to n, computes the complete set of spanning trees of the convex
cap containing the first i faces in the ordering. The set of spanning trees is
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then mapped to a superset relationship with the set computed for i − 1. The
final output is a disconnected graph G where each edge of G represents a subset
relationship.

Note that this is not an Unfolder in the usual sense. Rather it is an algorithm
for identifying relationships between generations of unfoldings.

Algorithm A.5: The Family Tree Unfolder

1: L← an ordered list of the faces of P such that every face in the ordering
shares an edge with some previous face in L.

2: G← ∅
3: for each fi ∈ L do
4: Pi ← Pi−1 + fi
5: Gi ← the graph of face-to-face connectivity of Pi
6: Li ← { all spanning trees of Gi}
7: for each g ∈ Li do
8: if ∃g′ ∈ Li−1‖g′ ⊂ g then
9: G+= (g′ → g)

10: else
11: G+= g (adds a valence-0 node to G)
12: end if
13: end for
14: end for

The blind search Unfolders

The Depth-first and Breadth-first Unfolders were first formalized by Wolfram
Schlickenrieder in (Sch97). They are extended here with implicit error correc-
tion: for each face visited in the chosen expansion of the graph of face-to-face
connectivity of P , if adding this face at the current edge would introduce over-
lap in the unfolding, the face is not added and the corresponding edge in G is
pruned.

Note that the blind algorithms as presented here will leave some faces un-
developed if they unfolded to overlap at every attempt. How failure to unfold
without intersection is handled is left as an exercise for the implementation. In
the YAMM test software, after all conflict-free unfoldings have been made, a sec-
ond pass over the remaining faces of P unfolds them into their final overlapped
positions.

Algorithm A.6: The Breadth-first Unfolder (Sch97, p.39)

1: G← the graph of face-to-face connectivity of P
2: U ← breadth-first spanning tree of G.
3: return U

Algorithm A.7: The Depth-first Unfolder (Sch97, p.41)

1: G← the graph of face-to-face connectivity of P
2: U ← depth-first spanning tree of G.
3: return U
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Algorithm A.8: The Breadth/Depth Hybrid Unfolder

1: G← the graph of face-to-face connectivity of P
2: U ← limited-depth-first spanning tree of G. New faces are added in

groups by face neighborhood, groups are traversed breadth-first.
3: return U

The heuristic Unfolders - supporting subroutines

With the exception of the Star and Steepest Ascent unfolders, each of the pro-
gressive unfolders use heuristic tree search techniques. As has been discussed
(Section 4.3,) heuristic tree search offers two primary ways to accelerate a search:
pruning and ordering. These are implemented in two subroutines, each of which
builds the net of the unfolding by gluing faces to available open edges. Both
subroutines operate on a decision tree in which each node is a face to glue and
each edge of the decision tree is a shared edge between two faces of P . In both
routines, the pruning of the decision tree (be it immediate or deferred) provides
implicit error correction and helps to avoid overlapped unfoldings.

HeuristicMinimizer(P , FB, Score()) Maintains a stack of faces, the top of
which is always the face to be expanded next; at each step of the unfold-
ing, chooses the neighbor of the current face which has the lowest score.
Prunes the decision tree by deferring nodes which would unfold to over-
lap, postponing them until they can be glued to another edge later in the
unfolding process.

SortingHeuristicMinimizer(P , FB, Score()) Maintains a list of available faces
and a list of <face, edge> pairs which are known to unfold to overlap.
These pairs represent edges of the decision tree which have already been
pruned. At each step of the unfolding, selects the optimal (lowest-scored)
available face and edge to glue next and expands the list of available faces
with the neighbors of the newly-glued face.

As with the blind-search algorithms, these subroutines may leave some faces
undeveloped if the faces persistently unfolded to overlap. A second pass is used
to complete any (overlapped) unfolding.
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Subroutine 3: HeuristicMinimizer(P , FB, Score())

1: U ← {FB} will be the unfolded net
2: S ← {FB} is the stack of developed faces to be expanded
3: while S 6= ∅ do
4: f ← Peek(S) is the next face to expand
5: L← {the edges ei of f where GetNeighbor(f, ei) /∈ U}
6: Sort L in descending order of Score(fi, ei)
7: f ′ ← the first face in L such that gluing f ′ to f introduces no overlap
8: if f ′ 6= ∅ then
9: U+= f ↔ f ′

10: Push(f ′, S)
11: else
12: Pop(S)
13: end if
14: end while
15: return U

Subroutine 4: SortingHeuristicMinimizer(P , FB, Score())

1: U ← {FB} U will be the unfolded net
2: L ← {the neighbors of FB} is the list of undeveloped faces to be ex-

panded
3: Blocked← ∅ is the list of <face, edge> pairs which are known to unfold

to overlap
4: while L 6= ∅ do
5: {f, e} ← the face f and its edge e which minimize Score(f, e), where

f ∈ L, GetNeighbor(f, e) ∈ U , and < F, e >/∈ Blocked
6: if f = ∅ then
7: break
8: else if gluing f at edge e introduces no overlap then
9: L−= f

10: U+= (f ↔ GetNeighbor(f, e))
11: else
12: Blocked+=< F, e >
13: if all edges of f are in Blocked then
14: L−= f
15: end if
16: end if
17: end while
18: return U

The heuristic Unfolders

Several of the heuristic Unfolders described here use the HeuristicMinimizer
and SortingHeuristicMinimizer subroutines. To do so, each Unfolder re-
defines the function Score(f, e). Score(f, e) takes as parameters a face and an
edge belonging to that face, and returns the ‘score’ of potentially gluing that
face to the net. The heuristic subroutines then select faces based on lowest
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score.

Algorithm A.9: The Least Height Unfolder

1: FB ← the lowest face in P
2: Score(f, e)← (GetNeighbor(f, e).center.Y +min(e1.Y, e2.Y ))
3: return SortingHeuristicMinimizer(P, FB , Score)

Algorithm A.10: The Star Unfolder (Sch97, p.48)

1: C ← an arbitrarily-chosen seed point on P
2: U ← {the set of shortest edge-paths from C to each vertex v of P}
3: return U

Algorithm A.11: The Steepest Ascent Unfolder (Sch97, p.54)

1: T ← ∅ will be the output cut-graph
2: for all v ∈ P do
3: u← the vertex in the 1-ring of v with the greatest Y co-ordinate
4: T+= (v → u)
5: end for
6: return U

Algorithm A.12: The Unravel Unfolder

1: FB ← the bottommost face of P
2: Score(f, e)← (
3: (GetNeighbor(f, e).center − f.center).normalized()
4: dot-product with
5: ((([0, 1, 0]× f.normal) + [0, 5, 0]).normalized())
6: )
7: return HeuristicMinimizer(P, FB , Score)

The output-constrained heuristic Unfolders

All of the heuristic Unfolders described here re-define Score(f, e) for use with
SortingHeuristicMinimizer.

Algorithm A.13: The Convex Hull Unfolder

1: FB ← the lowest face in P
2: Score(f, e) ← the area of the convex hull of the partial unfolding U if

face f is glued at edge e
3: return SortingHeuristicMinimizer(P, FB , Score)

Algorithm A.14: The Path Minimizer Unfolder

1: FB ← the lowest face in P
2: Score(f, e) ← the number of edges crossed in the partial unfolding U

between FB and f
3: return SortingHeuristicMinimizer(P, FB , Score)
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Algorithm A.15: The Radius Minimizer Unfolder

1: FB ← the lowest face in P
2: Score(f, e)← the linear distance in the unfolded plane from the center

of the development of FB to the center of the development of f
3: return SortingHeuristicMinimizer(P, FB , Score)

Unfolders for non-convex polyhedra

Any non-convex unfolding algorithm must be capable of returning failure (or an
overlapped unfolding) because there are multiple known examples of nonconvex
surfaces which cannot be unfolded. These algorithms must also be implemented
more robustly than their convex-surface peers, as they may be asked to unfold
surfaces with borders.

Each of the non-convex Unfolders described here assigns an average angle
deficit to a face before unfolding. In the case of faces on a border of the polyhe-
dron with vertices for which angle deficit cannot reasonably be calculated, the
value −2π is used.

Algorithm A.16: The Curvature Ordering Unfolder

1: FB ← the face in P with highest average angle deficit
2: Score(f, e)← average angle deficit of the vertices of f
3: return SortingHeuristicMinimizer(P, FB ,−Score) (Negated to min-

imize)

Algorithm A.17: The Tracer Unfolder

1: FB ← the face in P with highest average angle deficit
2: Score(f, e)← the absolute value of
3: (f.center − GetNeighbor(f, e)).normalized()
4: dotted with
5: (the normalized gradient of the angle deficit at f)
6: return HeuristicMinimizer(P, FB , Score)
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Algorithm A.18: The Region Unfolder

1: The surface P is separated into distinct regions by positive (R+
i ) and

negative (R−i ) curvature.
2: The shortest paths (Si→j) on the surface between each positive region

are recorded. Note that these paths must necessarily include faces of
negative curvature.

3: Each positive region is independently unfolded to an isolated net, using
a recursive call to another unfolding algorithm.

4: One positive region R+
0 is arbitrarily designated as the ‘root’ of the

unfolding.
5: The faces on the paths S0→i from R+

0 to each of the other positive
regions are progressively glued to the unfolded net of R+

0 until they
reach R+

i . The unfolded net of R+
i is then added to the unfolding, until

all positive regions have been joined into a single unified unfolding U .
6: The border set of undeveloped faces around U then becomes the ad-

vancing wavefront of a second unfolding process, adding the negative
regions onto the outer perimeter of the positive.

The Truncation Unfolder

The Truncation Unfolder is inspired by the leaf-truncation theorems of (BO07),
but it carries the idea further by supporting truncation of surfaces beyond
domes. As such the Truncation Unfolder as implemented here is not guar-
anteed to unfold a surface without overlap. For an example of why this is the
case and further discussion of this algorithm, please see Section 2.4.

Algorithm A.19: The Truncation Unfolder

1: A← the highest vertex in P
2: Q ← a pyramid with apex A, with one edge of the pyramid per edge

incident to A on P
3: T ← the non-base edges of Q will be the cut-graph
4: while ‖Q‖ < ‖P‖ do
5: v ← the highest vertex on a face f in P which is not in Q
6: Truncate Q, taking its intersection with the infinite half-plane passing

through f with normal opposite to the normal of f
7: Replace the edge in T which passed through v with an edge to v

and two new edges from v to the base face along the two edges of f
incident to v

8: end while

The Alpha-Beta Unfolder

For full discussion of the alpha-beta rules which define the behavior of the
Alpha-Beta Unfolder, please see Section 3.3.
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Algorithm A.20: The Alpha-Beta Rules

1: C ← FB .center, the center of the development of root face FB
2: L← {the vertices of FB}, a list of unexpanded vertices
3: E ← a list of expanded vertices, initially empty
4: while L is not empty do
5: v ← the vertex in L whose furthest development is closest to C
6: if v is the tip of a cut-path Φ then
7: w ← the vertex in the 1-ring of v such that βw > (π − αv)/2 and

which maximizes (vI − C · wI − vI)
8: else
9: w ← the vertex in the 1-ring of v which maximizes (v − C · w − v)

10: end if
11: Cut the edge v → w
12: Develop all faces around v and append to L all vertices on the new

perimeter which are not already in L or E
13: Remove v from L, add v to E
14: if w ∈ E then
15: w′ ← w
16: while w′ ∈ E do
17: temp← the vertex to which w was cut
18: Remove w from E, add w to L
19: w′ = temp
20: end while
21: end if
22: end while

The Collision Repair Unfolder

The Collision Repair Unfolder is described in detail in Section 3.4. It relies on
subroutine 5, Repair(C), to repair each individual collision. Subroutine 5 is
reprinted from Algorithm 3, Section 3.4.
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Subroutine 5: Repair(C)

1: X ← the first crossed edge in the collision C
2: Y ← the edge furthest upstream which crosses X
3: PX ← the polygon in the source polyhedron whose development contains

the edge X
4: PY ← the polygon in the source polyhedron whose development contains

the edge Y
5: L ← {p0 = PX , p1, . . . , pn−1 = PY } is the shortest path on the polyhe-

dron from PX to PY
6: for each pi ∈ L, i > 0 do
7: e← the edge shared between pi−1 and pi
8: g ← the edge shared between pi and the parent of pi
9: if e ∈ T then

10: G−= e
11: G+= g
12: end if
13: end for

Algorithm A.21: The Collision Repair Unfolder

1: U ← a Steepest Edge unfolding of P
2: while U has conflicts do
3: C ← the conflict which lies closest to the center of the unfolding
4: Repair(C)
5: end while
6: return U



Appendix B

YAMM

The YAMM1 software package provides a forum for experimentation with un-
folding. It allows the user to view three-dimensional polyhedral models, cut
their edges by various unfolding algorithms, and animate the results. YAMM
has been developed in C++ using Microsoft Visual Studio 6.0 and 8.0 under
Windows XP and Vista. A compiled executable may be downloaded from

http://bentonian.com/Papers/Dissertation/

and the source code is available for academic use upon request.
This Appendix is provided for the reader as an introduction to the features

of YAMM. It is not intended as a complete survey of the software, nor as a user’s
manual. For further details on YAMM, please consult the author directly.

B.1 Principal Features

YAMM offers the following principal features, among others; a few screen-shots
are presented in figure B.1:

• Polyhedral mesh modeling

– Implicit surface modeling with metaballs and metalines

– Bézier patch modeling (in a limited fashion)

– Subdivision (in a limited fashion)

– Precomputed mathematical models chosen for interest, including two
different ways to generate random convex polyhedra

– Manual vertex and face editing

• Unfolding of polyhedral surfaces through a large suite of unfolding algo-
rithms, which can be extended through the addition of further modules
written in C++

• Animation of unfoldings

• Curvature and convex hull analysis
1‘YAMM’ stands for ’Yet Another Metaball Modeler’; the software was originally designed

as an implicit surface modeling tool. It has outgrown its roots.
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(a) The cow PolyMesh (b) Implicit surface modeling

(c) A Bézier patch, with cur-
vature

(d) A twisted half-torus

(e) Curvature flow on a cooli-
noid

(f) Convex curves

(g) Unfolding a geodesic
sphere

(h) Finding convex hulls

Figure B.1: YAMM in action
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Figure B.2: The PolyMesh settings panel provides a
host of rendering, editing and unfolding options for
the PolyMesh. Options include:
◦ Back- or front-face culling; edge highlighting; alpha-
blending
◦ Show or hide bounding box, seams, valleys and
dented faces
◦ Edit vertices
◦ ‘Pop’ (extrude) faces
◦ Highlight convex curves
◦ Patch seams, remove dents, merge coplanar convex
faces and flip valley edges
◦ Bevel corners, replace faces with Bézier patches, and
subdivide faces
◦ Find the convex hull
◦ Replace every triangle with a polyhedral banding
hexagon
◦ A selection of Unfolders

• Recording to still image and video

• ...and many more!

B.2 Modeling Polyhedra

YAMM’s internal representation of a polyhedron is called a PolyMesh. Many
of the features of YAMM are accessed through manipulation of a PolyMesh;
Figure B.2 shows the PolyMesh settings panel and gives a brief overview of the
features available.

A PolyMesh stores the lion’s share of its data in a linked list of vertices and
a linked list of faces; faces store counter-clockwise-ordered lists of pointers to
vertices and vertices stores unordered lists of faces.

B.2.1 Vertex editing and mesh repair

While YAMM makes no pretense at being a 3D editing platform, it does offer
a few tools which can be useful in constructing test cases and modifying small
models. Users can edit individual vertices, dragging them in 3D or truncating
them by using sliders to choose a cutoff plane (Figure B.3(a).) Users can also
‘pop’ faces, replacing a face with a pyramid whose height is a function of the size
of the face (Figure B.3(b).) This allows a user to, for example, quickly stellate
a polyhedron.

YAMM also has several features which were built to support ill-behaved
geometry, a common issue when models are downloaded from online sources.
Seams (edges which are reported as border edges, having only one attached
face, which actually overlap another edge in the same position believed to be a
border from the other side) can be ‘patched’ and spliced together at the click of
a button. Coplanar faces which together form a convex boundary can be merged
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(a) Editing vertices manually, trun-
cating one vertex

(b) ‘Popping’ the faces of a dodecahe-
dron

Figure B.3: Editing PolyMeshes

into a single convex face, a useful feature when downloaded data is undesirably
simplicial. It is also not uncommon for surfaces which are generally convex to
be locally concave because a square has been split into two triangles with the
diagonal edge creating a valley instead of a ridge; this can be detected by com-
paring normals and, in many cases, the square re-split with the other diagonal
following a ridge line. These automated repair features can be very useful when
building a test-case in, for example, YAMM’s implicit-surface modeling tool.

B.2.2 Beveling, banding, and ‘bezification’

YAMM implements several automated tools to convert a PolyMesh into a more
complex (and hopefully more interesting) PolyMesh. Chief among these are:

Subdivision Every non-simplicial face on the surface is triangulated. Then
every triangle is replaced with four triangles, joining the midpoints of the
edges of each source face; midpoints are shifted away from the center of the
surface to have radius equal to the average of the radii of the endpoints of
the edge. This is an excellent way to convert, for example, an icosahedron
into a geodesic sphere (Figure B.4(a).)

Beveling Every vertex on the convex hull of the surface is truncated, by a
plane which passes through the edges incident to the vertex at 1/3 their
length (or the closest best-fit match) (Figure B.4(b).)

Banding Each face of the polyhedron is ‘banded’ by the polyhedral banding
algorithm (Algorithm 2), replacing each k-sided face with 1+2k new faces
(Figure B.4(c).)

Béziers Each face on the surface is replaced by an appropriate combination of
triangular and quadrilateral Bézier patches. (Figure B.4(d).)
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(a) Triangle subdivision (b) Beveled vertices (beveled three
times)

(c) Polyhedral banding (d) Bézier patches

Figure B.4: Advanced operations on a dodecahedron

B.3 Implicit Surface Modeling

The YAMM engine was first developed as an implicit surface modeler and it
supports those early features to this day. To discuss implicit surface modeling,
or ‘metaball’ modeling as Jim Blinn called it, is well outside the scope of this
document; the reader is referred to (Bli82), which is more or less the seminal
work in the field, and to Paul Bourke and Marco Pugliese’s very readable online
overview and history of the field (Bou97).

YAMM supports metaballs and metalines. The user controls the scalar force
on the meta-primitive, including negative values (Figure B.5(a)) and, with pa-
tience, can model simple shapes (Figure B.5(b).) Implicit surfaces are found
with recursive octree refinement (shown as cubes in Figure B.5(b)) which al-
lows complete control over the smoothness of the mesh of faces. The implicit
surfaces generated can then be converted into PolyMeshes for editing and un-
folding.

YAMM also offers software support for metasurfaces: classes derived from
the metaball class which generate their force functions from other procedural
data. This is how the implicit surfaces in Chapter 5 are created: the unfoldabil-
ity of a coolinoid, for a given h, k and dim, is sampled as the force function of an
implicit surface being evaluated over a matching x,y,z domain. An overlap-free
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(a) Simple blobby modeling (b) Negative metalines

Figure B.5: Advanced operations on a dodecahedron

Figure B.6: MathFn settings panel

unfolding maps to 1, self-intersection to 0, and the resulting surface interpolates
the boundary of 0.5.

In YAMM, an implicit surface can be added from the Edit menu or by
pressing the F2 key.

B.4 MathFn

One particularly useful class derived from PolyMesh is the MathFn object, which
hardcodes a set of frequently-used primitives for easy access. The MathFn
settings panel (Figure B.6) lets the user choose from 21 preset test models,
tuned by two scalar slider controls. A sampler of the presets are presented in
Figure B.7.

The du and dv sliders usually set the resolution of the surface; for example,
in the case of the parametric sphere, du determines the number of quads in
one horizontal ring on the surface and dv determines the number of rows of
quads. In the case of the random convex polyhedron, dv is unused and du sets
an approximate vertex count.
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(a) Saddle (b) Valley (c) Inner Torus

(d) Torus (e) Twisted Torus (f) Parametric Sphere

(g) Twisted Half Torus (h) Double-twisted Half
Torus

(i) Banded Thrice-
Subdivided Icosahedron

(j) Spherical Vertex (k) Random Convex
Polyhedron

(l) Monkey Saddle

Figure B.7: A few of the preset models built into the MathFn object
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In YAMM, a MathFn object can be added from the Edit menu or by pressing
the F1 key.

B.5 Unfolding

When a PolyMesh object is selected in YAMM, the properties panel includes
a list of available Unfolders. Double-clicking on any Unfolder will run that
algorithm on the chosen mesh. Most unfolders work progressively and their
results can be monitored in the 3D view or observed in 2D projection in the
properties panel.

The Unfolders module of YAMM is designed to be an extensible library of
experimental unfolding algorithms. All Unfolders derive from a base class, which
runs the core unfolding loop; new unfolders are added through a typical Factory
design pattern. Every Unfolder must be able to answer a few basic queries:

• Is it done yet?

• When done, what is the ratio of the number of non-overlapped faces to
the total number of faces?

• What is the current net? Current cut-graph?

• Is it generating more than one unfolding, and if so,

– How many does it expect to generate?

– How many so far?

– How many have been successful (i.e., free of overlap?)

When an unfolded net is assembled, it is usually placed 10% of the source
model’s height below the lowest face on the model and rotated so that the
lowest faces roughly match in position and orientation. This lends an intuitive
link between source and net. The unfolding is actually a PolyMesh in its own
right; converted to an animation, it can be manipulated with all the tools that
control and edit the PolyMesh.

Internally an unfolding stores its connectivity in the data structures of Poly-
Mesh, augmented by a tree of matrix transforms relative to the ‘root face’ (usu-
ally the lowest face in the source polyhedron.) In an earlier design every face
stored its vertex data separately and computed its final position in the plane by
calculating its rotation around the anchoring edge that connected it to the root,
but this was prone to floating-point drift; calculating a fresh projection every
time accumulated imprecision and sometimes produced nonplanar unfoldings.
The current design stores a tree of matrices which matches the unfolded net
of the PolyMesh; each node of the transform tree carries the matrix transform
necessary to rotate the corresponding face into the plane of its parent in the
unfolded net. This tree of matrices is much more accurate and less vulnerable
to floating-point error.

Visually, the unfolded net can be used to display meta-data about the un-
folding as well. Collisions are highlighted by the familiar red-shaded polygons.
The BSP (Binary Space Partitioning tree, discussed below) shows the collision-
detection data structures which support the unfolding. The user can request
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Figure B.8: (a) Unfolded net for the peanut model (b) Cut-graph for the peanut
(c) The peanut cut-graph shaded and height-mapped by curvature. Notice how
the open spaces between regions of the cut-graph are bordered by the vertices
of greatest curvature: where there is a gap in the cut-graph, there are no cuts
in the net. The Curvature Ordering Unfolder unfolds outwards from the faces
with highest average curvature, and so they are surrounded by un-cut edges.
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Figure B.9: The animated unfolding a sphere

Figure B.10: (a) The Unfold-A-Matic dialog (b) Auto-generated unfoldings

that the arc of each leaf-node of the cut-graph be rendered; likewise the con-
vex hull of the unfolded net; and the entire unfolding can even be shaded by
the height of each vertex (a useful visualization for Unfolders like Least Height
and Collision Repair.) Another very useful feature is that any unfolding can
be manually edited, which is very useful for exploring the effects of different
cut-graphs on the final net.

The property panel for an unfolding can offer a wealth of information. It can
display both the unfolded net (Figure B.8(a)) and the cut-graph (Figure B.8(b)).
A secondary mode when viewing the cut-graph will project virtual space above
the cut-graph to show the angle deficit at each vertex in the graph, shaded by
magnitude and direction of curvature (Figure B.8(c).)

Any Unfolder can also be converted into an animation, for slideshow or movie
output (Figure B.9.)

B.6 Automated data collection

The Unfold-A-Matic dialog (Figure B.10) automates data collection by loading
large numbers of models for unfolding by different algorithms and recording the
data to a spreadsheet.

These data sets can be huge, stretching to up to 100,000 randomly-generated
convex polyhedra at a time. With early Unfolders this was never necessary but
with more recent techniques–the Least Height Unfolder and Collision Repair–
sometimes 100,000 polyhedra of approximately 300 vertices apiece, or more, are
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(a) (b)

Figure B.11: Generating random convex polyhedra: (a) Method one (128 faces)
(b) Method two (144 faces)

necessary to construct a statistically significant sample.
To support a Monte-Carlo method of finding the average unfoldability of a

given surface the Unfold-A-Matic offers a brute-force mode, in which random
unfoldings are generated continuously. It should be noted, however, that this
is not an optimal form of randomized simulation: the cut-graphs generated are
generated separately each time and do not avoid duplicates, which over time
can lead to redundancy and a diminishing of the rate at which new unfoldings
are found. This does not impact the probability distribution of the results
discovered but it does reduce–sometimes significantly–the speed with which they
are determined.

B.7 Interesting Internal Algorithms

B.7.1 Generating random polyhedra

Generating a random convex polyhedron is not as easy as one might think. Two
methods are commonly used for generating a random closed convex surface of
roughly unit radius:

1. Take the convex hull of a set of randomly-generated set of points at unit
distance from the origin (Figure B.11(a).)

2. Take the intersection of a set of randomly-generated infinite half-planes
each of which passes through a randomly-chosen point at unit distance
from the origin with normal equal to the negation of the point (Fig-
ure B.11(b).)

These two methods produce notably dissimilar outputs. In method one, the odds
of more than three vertices happening to be exactly coplanar are extraordinarily
low; therefore the polyhedra produced are almost entirely simplicial. In contrast,
in method two it is very uncommon that more than three planes intersect at
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Algorithm 6: Enumerating spanning trees

1: L← the list of edges of G, ordered such that each edge other than the
first edge in the list shares an endpoint with an edge before it in the list;
L is the list of edges to be added to the evolving list of spanning trees

2: T ← a list of one element, which is a tree of one element, which is the
first edge popped off of L; T will store the evolving list of spanning trees

3: for all e ∈ L do
4: T ′ ← ∅
5: for all t ∈ T do
6: if Only one endpoint of e is in t then
7: T ′ += (t+ e)
8: else
9: C ← the loop of edges in the tree t from one endpoint of e to the

other
10: for all eC ∈ C do
11: T ′ += (t+ e− eC)
12: end for
13: end if
14: end for
15: T ← T ′

16: end for

a single point, and so trivalent vertices predominate. The two methods are
compared side-by-side in Figure B.11.

YAMM uses method one for most Monte-Carlo simulations, primarily be-
cause method one is significantly faster to compute with the software available.

B.7.2 Enumerating spanning trees

A number of algorithms have been proposed for enumerating the spanning trees
of a graph; Malcolm Smith gives a well-documented survey of the field in his
1997 MSc thesis (Smi97). It appears that the best method currently known
is that of Kapoor, Kumar and Ramesh (KR00), but YAMM does not use this
algorithm. To support the Family Tree Unfolder, the model used by Kapoor
et al. was insufficient: the author needed a more iterative algorithm to list
spanning trees, which would allow snapshots of state to be taken on an edge-
by-edge basis, and so a much slower (but much simpler, and very easy to code)
method was adopted. This lack of optimal implementation should not be seen
as a failure on YAMM’s part; the enumeration of spanning trees is a ‘black box’
problem, independent of unfolding and well outside the scope of YAMM and
this dissertation.

The method used in YAMM to enumerate the spanning trees of a graph G
is given in Algorithm 6.
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Figure B.12: The BSP of an unfolding is shown by a series of nested rectangles
subdividing the horizontal plane. Vertical lines connect each unfolded face to
the node in the tree which contains it.

B.7.3 Binary Space Partitioning trees

A binary space partitioning tree (‘BSP’) is a data structure often used in com-
puter graphics to accelerate spatial lookup. A BSP tree is a subdivisions of
space; each non-leaf node stores a plane and possibly a few points, each leaf
node stores a list of points. Each non-leaf node has two children, named ‘left’
and ‘right’. Any point stored in the ‘left’ child will always fall on one side of
the plane; points stored under the ‘right’ child will fall on the other side; and
points which are exactly in the plane of the node are listed in the node itself.

The BSP accelerates spatial lookup for operations such as finding all points
in a set within a certain radius. This is an essential optimization for detecting
collisions between faces in an unfolding. Consider this: unaccelerated, to test
for a collision between some new triangle f and a set F of n triangles which have
already been unfolded could require as many as 3×3×n edge-intersection tests.
Using a BSP, an O(log n) search will return the very short list of faces (usually
just three or four) in F which lie close enough to f to possibly intersect; to test
that short list is a very significant improvement in time.

B.7.4 Dijkstra’s Algorithm and shortest paths

YAMM implements Dijkstra’s Algorithm (Dij59) for finding the shortest paths
on a graph. To find shortest paths across faces on a polyhedron, Steiner point in-
terpolation is used, inspired by (ALMS98). As Aleksandrov et al. demonstrate,
the placement and distribution of Steiner points can be heavily optimized, but
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Figure B.13: Shortest paths approximated for a minimum of five evenly-spaced
Steiner points per edge on a randomly-generated convex polyhedron

the implementation in YAMM does not leverage many of their techniques. A
sample of shortest paths from a point on a random convex polyhedron to every
vertex is shown in Figure B.13.

B.8 Data Formats

YAMM accepts the following file types as input, with varying degrees of feature
support:

• XML file format (.xml)

• 3D Studio Max models (.3ds and .asc)2

• OFF files (.off)3

• VRML 1.0 and 97 models (.wrl)4

YAMM supports the following forms of data export:

• XML file format (.xml); includes support for color, texture, and camera
settings

• OFF files (.off)

2http://www.fileformat.info/format/3ds/
3http://people.scs.fsu.edu/~burkardt/data/off/off.html
4http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/
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YAMM offers the following forms of data capture:

• Capture images to .png with alpha-blended transparency

• Capture images to .pdf with vector-rendered PostScript annotations

• Capture animations to .png slideshow or .avi movie

• Automated unfolding of large sets of models by large sets of Unfolders,
with spreadsheet recording for the results

• Automated coolinoid unfoldability discovery through octree reduction

Most data files are stored in YAMM’s internal XML structure, an extensive
XML hierarchy which will not be detailed here. The use of XML lends flexibility,
legibility and easy manual adjustment of data co-ordinates. It also means that
fields can be added or removed from the file without loss of use, and that data
copied to the clipboard can be read in any text editor.

PolyMesh data is stored in the traditional “list of vertices, list of faces as
indices” model. Vertices are sometimes tagged with an additional string, ‘[bin]’.
This optional string is a hex transcription of the binary representation of the
three double-precision floating-point values which store the vertex co-ordinates.
For high-resolution models, the loss of precision from truncating floats to four
significant digits had proved unacceptable.

A typical XML data file for YAMM might look like this:

<?xml version="1.0" ?>

<SceneRoot>
<Children>
<PolyMesh>
<Vertices>
<Vertex> 1.0000 1.0000 1.0000</Vertex>
<Vertex>-1.0000 -1.0000 1.0000</Vertex>
<Vertex>-1.0000 1.0000 -1.0000</Vertex>
<Vertex> 1.0000 -1.0000 -1.0000</Vertex>

</Vertices>
<Faces>
<Face> 0, 2, 1</Face>
<Face> 0, 1, 3</Face>
<Face> 0, 3, 2</Face>
<Face> 1, 2, 3</Face>

</Faces>
<DrawEdges>true</DrawEdges>
<Color>0.7500 0.7500 0.7500</Color>

</PolyMesh>
</Children>
<Viewpoint>
<At> 0.0000 0.0000 0.0000</At>
<From> 5.4875 6.6461 5.0711</From>
<Up> -0.7816 0.6232 0.0290</Up>

</Viewpoint>
</SceneRoot>
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Appendix C

Models

Many of the models used in this dissertation have been made available in an
online repository. Many can be downloaded in .OFF format for use in most
popular 3D software, and all can be downloaded in .XML format for use in
YAMM. The models are available at

http://bentonian.com/Papers/Dissertation/

The files Bunny, Cow, Duck, and Teapot are not original creations. Each
of these models is publicly available on the internet. The Fukuda’s Tetrahedron
model is this author’s implementation of Fukuda’s original surface.

Convex surfaces

Dome Mesa Fukuda’s Tetrahedron

Banded Icosahedron
[Level 0]

Banded Icosahedron
[Level 1]

Banded Icosahedron
[Level 2]
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Banded Icosahedron
[Level 3]

Banded Tetrahedron

C.0.1 Spheres

Hi-resolution Simplicial Octrees Parametric

Simplicial Trivalent

C.0.2 Platonic solids

The Platonic Solids Tetrahedron Octahedron

Dodecahedron Icosahedron
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C.0.3 Non-convex surfaces

Bean Curl Peanut

Star Torus Twisted Torus

C.0.4 Examples and counterexamples

Empty Sector Empty Sector
(trimmed)

Local Convexity

Local Convexity
(minimal)

Prismatoid banding Prismatoid banding
(doubled)

Wide Pyramid Wide Pyramid
(truncated)

Witch’s Hat Assembly
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Convex Cap Truncated Cube (with
conflict)

Truncated Tetrahedron
(with conflict)

C.0.5 Scanned models

Bunny Cow Duck

Teapot

C.0.6 YAMM models and implicit surfaces

Bézier Patch Bézier Triangle Coolinoid
Developability

“200” “Animoids” “Bowling Pin”
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“Egg” “Randomly Cool
Model”

“Scorpion”
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