3.4. COLLISION REPAIR 89

3.4 Collision Repair

Sketch of the proof: It is shown that any one collision in an overlap-
ping unfolding can be repaired by moving the collided faces, although
this may introduce new collisions elsewhere. It is then argued that
on certain types of nets, new errors are introduced no nearer to the
center (and often further out) than old ones, ensuring that if errors
are repaired beginning with those closest to the center that they can
ultimately all always be repaired.

This section presents the building blocks of a proof. The proof is not com-
plete, and the work which remains to be done is detailed before the end of the
section.

3.4.1 Terminology

Flow on a cut-graph In the discussion of this section it will be useful to de-
scribe the ordering of vertices on a cut-graph. Returning to the common
metaphor of the cut-graph as a set of streams emerging from a mountain-
side and flowing downhill away from its leaf-nodes, the terms ‘upstream’
and ‘downstream’ will be used to describe the relative positions of two
vertices. Specifically, for two vertices P and @ in the cut-graph T, if
the longest path on T from any leaf-node of T to P is longer than the
longest such path to @ then P is said to be upstream of Q). To extend the
metaphor, this means that if one were to sail a boat from outside an un-
folded net into the gap between the outermost developments of a branch
of the cut-graph, one would pass the developments of) before reaching
those of P.

k-local overlap In (Luc06, p.34), Lucier defines k-local overlap as follows:

Suppose P is a polyhedron with an unfolding [net] U. Suppose
further that there is an overlap between faces f; and fo. Then
if there are at most k vertices in the shortest path along edges
of U starting with a vertex incident to f; and ending with a
vertex incident with fs.[...] In particular, an overlap is I-local if
f1 and fy are both incident with a common vertex.

Using this definition and reasoning akin to that of Polthier in (Pol03) (see
Lemma 1.2, p. 15), Lucier then gives the following useful lemma:

Lemma 3.8 (Lucier) No unfolding of a convex polyhedron contains a
1-local overlap.

The dual of a developed edge Every cut edge unfolds to a right develop-
ment and a left development. The dual of the left development is the
right development, and vice-versa.

The parent of a face Every unfolded net is a connected, acyclic graph: an
undirected tree. Define the parent of a face P in an unfolding as the face
which is adjacent to P in the unfolding and which lies toward the root of
the net.

90 CHAPTER 3. THREE CONJECTURES

/

Downstream

First crossed edge
Uncrossed dual

Figure 3.10: Detail of a collision showing labeled terms. There is exactly one
first crossed edge in every collision.

If P lies on the path in the net from @ to the root of the net then P is an
ancestor of Q.

3.4.2 The first crossed edge

Oftentimes when a net unfolds to collisions, more than two polygons are caught
in the same group of overlapped faces (see Figure 3.11, in which each collision
involves three faces.) For every such group of collisions there is always an edge
which must be crossed before all others as the cut flows downstream. The first
crossed edge is defined to be the edge which lies furthest upstream of those
which are crossed in the collision, whose dual is not crossed, and whose dual lies
upstream from the collision (Figure 3.10.)

Lemma 3.9 For every group of overlapped faces, there must exist exactly one
first crossed edge.

Proof. By Lemma 3.8, no unfolding of a convex polyhedron contains a
1-local overlap. Every overlap is therefore at least 2-local and so there must
exist at least one edge on the cut-graph which is not crossed and which is
separated from the outside of the unfolding by the collision. Borrowing once
again from the maritime metaphor, call this edge and the set of all adjacent
edges in the border of the unfolding, up to but not including the first edges
caught in collision on either side of the cut-graph branch, the ‘lagoon’ of the
collision. Lucier’s corollary guarantees that in any overlap, the lagoon is not
empty.

3.4. COLLISION REPAIR 91

At the mouth of the lagoon are two edges which are crossed, either by each
other or by other edges in the collision. Label these two edges A and B. Assume
without loss of generality that A lies upstream from B (Figure 3.10.) Then AT
lies upstream from B® on the right development of the branch of T which
contains A and B, and A" lies upstream from B” on the left. If it were the case
that A” were also conflicted then the conflict of A¥ would be further upstream
(into the lagoon) than the conflict of B%, in which case BL would not have been
the first collided edge on the left-hand shore—a contradiction.

Thus, for every lagoon there is exactly one first crossed edge.

The one exception would be if A were the same edge as B. However, this
is impossible. The left and right developments of every edge diverge in the
unfolded plane by the sum of the angle deficits of all of the vertices on the cut-
graph branch upstream from them, which must be a positive angle on a convex
surface. Then the two edges can only cross if they do so at a positive angle
(measured counterclockwise from the direction of travel of the right development
to that of the left). This is only possible where the left development travels
outwards from right to left and the right development travels outwards from
left to right (where the direction ‘outwards’ refers to ‘along the perpendicular
bisector of the sweep from one development to the other.) This would imply
that the two developments are proceeding from positions in which their lower
vertices have exchanged positions, which could only be possible if there were
another intersection between the developments further upstream on the branch.
This would mean that A or B were not in the lagoon’s innermost collided pair.
O

3.4.3 Repairing a single collision

A collision is repaired if one edge is removed from the cut-graph and another edge
added in such a way that the original pair of crossed edges no longer intersect
in the unfolding. A method for repairing a conflict is defined in Algorithm 3.

The design of Algorithm 3 is quite simple. The lowest crossing is identified
and within it X, the first crossed edge. X determines Px, the face which will
not move. Py is then attached to Px by unfolding the shortest path between
them; there can now be no conflict between Px and Py, as no cut-graph branch
separates them.

The shortest path between two faces is the set of faces which contain the
geodesic path between the center points of the two faces.

Caveat: In the author’s implementation this algorithm is slightly modified:
the shortest path is actually computed by minimizing the number of steps on
the graph of face-to-face adjacency on the polyhedron, and the path chosen is
not allowed to include the edge which had anchored Py to its parent. The
motivation for this choice is discussed below.

Lemma 3.10 If a collision between faces Px and Py is repaired according to
Algorithm 8 then there will no longer be any overlap between Px and Py .

Proof. If Px and Py share an edge then this is trivially true.

If ||L|| > 2 then the algorithm will unfold the shortest path from Px to Py
into a strip of faces which contains a geodesic on the surface from Px to Py
and therefore contains a straight line in the unfolded plane. Thus the faces of

92 CHAPTER 3. THREE CONJECTURES

Figure 3.11: The unfolded net of a randomly-generated surface with 296 faces,
which has four separate conflicts when unfolded by the Steepest Ascent Unfolder

3.4. COLLISION REPAIR 93

Algorithm 3: Repairing a single collision in cut-graph T

1: Let edge X be the first crossed edge in the collision

2: Let edge Y be the edge furthest upstream which crosses X

3: Let face Px be the polygon in the source polyhedron whose development
contains the edge X

4: Let face Py be the polygon in the source polyhedron whose development
contains the edge Y

5: Let L = {pp = Px,p1,...,0n—1 = Py} be the shortest path on the
polyhedron from Px to Py

6: for each p; € L, i > 0 do

7: Let e be the edge shared between p;_; and p;

8: Let g be the edge shared between p; and the parent of p;
9. if e €T then

10: Remove e from T

11: Addgto T

12: end if

13: end for

(a) (b) () (d)

Figure 3.12: The overlapped random unfolding of a random convex polyhedron
of 38 faces is repaired by repeated application of Algorithm 3

the path cannot intersect. (Note, however, that no statement is made about
whether or not the faces on the path intersect faces not on the path.) O

Corollary 3.11 FEvery collision can be repaired.

Proof. For every pair of faces, there exists a shortest path between them.
If this path is unfolded as described above then the two faces cannot intersect.
O

3.4.4 Application of the repair algorithm

It has now been shown that every collision can be repaired. Is this sufficient to
remove all collisions from any overlapped net?

No. To repair a collision may very well introduce others. In experimental
trials, the simple mechanism described thus far has been found to sometimes

94 CHAPTER 3. THREE CONJECTURES

Algorithm 4: Collision repair for randomized nets

1: Let U be a randomly-generated unfolding of the polyhedron

2: Let M be a map from nets to integers; M|u] is zero for any unfolded
net v which has not been previously visited

3. Let Fpy be the first developed face

4: Let C be the center of Fj

5: while 3 collisions in U do

6: Let K be the collision in U closest to C

7. if M[U] > 4 then

8 Return failure

9: else if (M[U] ++) is not odd then

10: Repair K by holding Px fixed and moving Py
11: else

12: Repair K by holding Py fixed and moving Px
13: end if

14: end while

move a face across a cut-graph branch into a new conflict for which the only
repair would be to move it back again in what would immediately become an
infinite loop.

This is not to say that the algorithm does not have its successes. Given
that there is no heuristic in the repair method which implies any sense of ‘ori-
entation’ to the repairs, it has seem reasonable to apply this repair method to
a randomly-generated unfolding of a randomly-generated polyhedron; a sample
sequence of such unfoldings and repairs is shown in Figure 3.12. Simply ap-
plying Algorithm 3 repeatedly is sufficient to remove all collisions from the net
shown.

Still, despite this encouraging result, infinite loops do occur. To avoid loops,
a more globally-aware algorithm is needed. There are two reasonable approaches
to such a problem:

1. Record nets which have already been visited and avoid them

2. Introduce heuristic knowledge from other successful unfolding algorithms

3.4.5 The first approach: repairing a randomly-generated
net

The design of this algorithm may not be immediately clear, but it is sur-
prisingly effective. The key insight here is that the choice to keep Px fixed
while moving Py in Algorithm 3 was essentially arbitrary. In fact there are two
possible solutions to every collision: Px may anchor Py or Py may anchor Px.

Algorithm 4 repairs every conflict that it finds, knowing that in doing so
it may move a face into a position in which the only repair for that face is to
restore it to where it came from. Rather than falling into an infinite loop at this
point, Algorithm 4 registers that this is a visit to a previously-encountered net
and ‘flips’ the collision so as not to move the face which had previously been
moved into conflict. Thus if a loop is found it simply tries to go the other way.

3.4. COLLISION REPAIR 95

Figure 3.13: This detail from an overlapped random unfolding of a random
convex polyhedron cannot be repaired by Algorithm 4. With two branches of
the cut-graph competing to determine which direction is ‘upstream’ from the
collision, the algorithm becomes caught in an infinite loop.

The odd choice of 4 for a termination test instead of 2 is driven by the fact
that a ‘state’, if one were to think of each of the nets being generated as a node
of a tree of nets to be searched, includes whether the last visit to the net was
odd or even indexed. So if two faces are ‘arguing’ back and forth in a collision,
it is not enough to try both directions of fix for only one of the possible nets;
both possible nets for both placements of the faces must be explored. But if
after both nets have tried to fix themselves with both possible solutions, none
has worked, the algorithm must return failure.

Algorithm 4 is flexible, resilient to variable data... and is, essentially, a
method to explore all possible repairs for a given initial unfolding. Infinite
loops notwithstanding, it will eventually visit every possible solution of the net,
and it does so in a guided exploration whose sole heuristic is to reduce the
number of conflicts. The simple argument for Algorithm 4 is:

Every repair removes (at least) one conflict and only some re-
pairs introduce new ones. Therefore the total number of colli-
sions in the net must decrease over time to zero.

Clearly, this is not a bullet-proof argument; but it expresses the spirit of the
algorithm nicely.

Conjecture 3.12 Algorithm 4 will repair the overlaps of any unfolding of any
convez polyhedron.

Rebuttal

Unfortunately a counterexample has been found. Figure 3.13 shows a detail from
a randomly-generated unfolding which induces an infinite loop in Algorithm 4.
The collision is oriented in such a way that the ‘flip’ of each possible repair

96 CHAPTER 3. THREE CONJECTURES

Algorithm 5: Collision repair for outward-facing nets

Let U be a Steepest Edge unfolding of the polyhedron

Let Fy be the lowest face in the polyhedron

Let C be the center of Fj

while 3 collisions in U do
Let K be the collision in U whose most upstream point of intersection
is closest to C'
Repair K

7: end while

=

(that is to say, the repair operation with the labels Py, Py exchanged) is the
unflipped repair from the other side of the conflict; the algorithm quickly reaches
four flips and returns failure. O

3.4.6 The second approach: repairing an outward-facing
net

Statistical analysis of the most successful unfolding algorithms has shown
that one pattern of unfolding is more effective than all others: unfoldings in
which the net, informally speaking, resembles a starburst. Schlickenrieder’s
Steepest Ascent algorithm® (Sch97, p.54), the discrete version of the Star Un-
folding (p. 30), the author’s Least Height Unfolder (p. 124), the alpha-beta
rules (Section 3.3) and even breadth-first unfolding (p. 124) will consistently
outperform algorithms which follow other patterns.

Let C be the center of the unfolding, the midpoint of the first developed face.
Recall that the inner development of edge PQ is labeled P'Q. A net is said
to be strictly outward-facing if, for all edges P — @ where P is upstream from
Q, |PE - C| < ||QF — €| and ||PT — C|| < ||Q® — C||. This requirement may
be relaxed; a net is said to be simply outward-facing if, for every edge P — Q
where P is upstream from Q, |[P! — C|| < [|Qf — C||; no requirement is made
on the outer development.

The author has found that the Steepest Edge Unfolder gives an outward-
facing (and, in approximately 95% of the cases sampled, a strictly outward-
facing)® net, which is sufficient for the repair algorithm. Using the Steepest
Edge Unfolder to construct the ‘seed’ net for Algorithm 5 has had startlingly
positive results.

One effect of performing repairs on an outward-facing net is that the repair
cycle does not fall into an infinite loop. Intuitively, the reason for this is that
each repair extends a cut-graph branch by adding at least one new cut edge to
the downstream side of the ‘lagoon’. The new cut edge has two developments,
only one of which belongs to a face which has moved; the other edge belongs to
an immobile face which is not a part of the current conflict. This means that if
the newly-moved face has moved into an overlapping position, then it already
has an edge whose dual is unconflicted, which will be the first crossed edge in

5Steepest Ascent: For each vertex, cut the edge to the vertex with the highest Y-value in
the surrounding 1-ring
6 Caveat: this claim was not tested for a statistically significant number of nets

3.4. COLLISION REPAIR 97

the next repair. Therefore the face which was moved in the first repair will not
move in the second, and so will not be returned to its former position.

The key idea of Algorithm 5 is that in an outward-facing net, the sides of
a development point downstream and away from the unfolding’s center. This
means that there is a rough—not perfect, but sufficient—correlation between how
far downstream a face falls on the cut-graph and how far from the center it will
be when developed. On an outward-facing net when a repair moves a face from
one side of a branch to the other, the face moves laterally, traveling roughly
‘across the current’ of the cut, with relatively minimal movement toward or
away from the center of the unfolding. Since every face on the shortest path
between Px and Py must lie between the two in the flow of the cut, the repair
algorithm ensures that no face further upstream than Px and Py is impacted
by the repair. Then the argument for Algorithm 5 is:

Every repair removes (at least) one conflict and only some re-
pairs introduce new ones, and no new collision will ever be in-
troduced further upstream than Px and Py . Therefore, even if
the minimum distance from the center of the unfolding to the
nearest collision may sometimes shrink for a single repair, it
must increase in the long run, until there are no collisions left
in the net.

Again, this is not a bullet-proof argument, but it expresses the spirit of the
algorithm nicely.

And here is the amazing thing: it works. On simplicial convex polyhedra, it
works every time. (So far.)

Algorithm 5 was tested on over 700,000 randomly-generated simplicial con-
vex polyhedra of up to 300 vertices apiece, generated by taking the convex
hulls of points randomly placed on a sphere. It was also tested against the
banded icosahedron for L = 0,1,2,3, and other known ‘difficult’ convex poly-
hedra. Even the counterexample to Algorithm 4 was unfolded without overlap,
because the anchor-shaped cut-graph branch that defeated Algorithm 4 will not
be generated in Algorithm 5.

Algorithm 5 has also been tested on over 75,000 randomly-generated non-
simplicial convex polyhedra. Compared to the 700,000 simplicial tests, the
author does not feel that this represents a sufficient sample, and so the claim
that ‘it works’ will be restricted to simplicial polyhedra. Nonetheless, no coun-
terexample has yet been found in either set of tests.

Algorithm 5 has displayed remarkable success at repairing a truly vast array
of overlaps on simplicial and non-simplicial surfaces alike. It seems incredible
that such a simple method could be so effective, but the testing data is undeni-
able.

3.4.7 Weaknesses in the argument

Collision Repair (Algorithm 5) is a method which can unfold every surface
devised to date, but this does not constitute a proof that Collision Repair can
unfold every convex polyhedron. The author deeply regrets that the proof
remains incomplete.

Algorithm 4 would seem to be more powerful and flexible than Algorithm 5,
but it can fail. Even if the current vulnerability to infinite loops were corrected,

98 CHAPTER 3. THREE CONJECTURES

the core design of the algorithm—a guided tree search which may exhaust all
possible nets—implicitly implies that failure is possible. As such, while it may
be more useful for the ‘real world’ (and, in particular, perhaps for non-convex
surfaces) it cannot be used to prove that all convex polyhedra are unfoldable.
In contrast, Algorithm 5 has no failure state.

The known flaws in the arguments are:

e A key lemma in support of Algorithm 3 would be to show formally that
the unfolding of the path from Px to Py cannot contain a self-intersection.

e A second key lemma in support of Algorithm 3 would be to show formally
that no face in the path from Py to Py will lie further upstream or
downstream than Px and Py.

e It is unclear why the initial net benefits from the outward-facing prop-
erty. Theoretical support for this observed result would greatly benefit
the proof.

e After a single repair, a net may lose the outward-facing property. Algo-
rithm 5 does not address this explicitly yet in testing it has not been a
problem. From this observation it can be conjectured the outward-facing
property may be stronger than is necessary.

e A key lemma in support of Algorithm 5 would be to show formally that
repair on an outward-facing net cannot fall into an infinite loop. The ex-
planation given for why this is not the case is insufficient: it does not make
clear how an outward-facing net behaves differently from a randomly-
generated unfolding, an essential distinction.

e A second key lemma in support of Algorithm 5 would be to show formally
that there is a bound on how much closer to the center a face being moved
in a repair can travel.

e A useful corollary would then be to show that there is a bound on how
much closer to the center a second face can be moved, if it is moved in
response to the motion of a first face which has already been moved in
a repair. There would seem, intuitively, to be an inward limit on such
cascading motion.

e Although empirical testing is not required for the proof, it would lend
further strength to the argument if non-simplicial convex polyhedra were
to be tested as extensively as simplicial surfaces.

3.4.8 Experimental support

All figures in this section were generated by Algorithm 5.

Figure 3.14 shows a simple example: a net with two conflicts when unfolded
by the Steepest Ascent Unfolder. Both conflicts were repaired.

Figure 3.15 shows the progressive repair of a randomly-generated non-simplicial
convex polyhedron.

Figure 3.16 shows the progressive repair of the banded icosahedron.

Figure 3.17 shows the repaired unfolding of the doubly-banded icosahedron.

3.4. COLLISION REPAIR 99

o)
M
(
W
I‘
(
© 0

Figure 3.14: Repairing two simple conflicts. (a) The polyhedron (b) The un-
folding, with collisions (c¢) Detail of the first collision (d) Detail of the second
(e) The first collision, repaired (f) The second collision, repaired

100 CHAPTER 3. THREE CONJECTURES

Figure 3.15: Repairing a randomly-generated convex polyhedron

3.4. COLLISION REPAIR 101

LA
A/

T
L

LL
AN/

VA
N\ /

AY
4

V'V V'\ V'V
L0\ .Y\ /- VA
BAVAV/VA VA VAV
AV VAVAY ANV VAVAVA AN AVAVA AN
JAYAN JAYA
\\/ \'/ V/\ J

Ve AVAN
Y JAVARE
AV VAVAYA. AN TR
JAVA LVAN
VV AV
LN/
HAVA VNN
AVAVAVAVA A\
JAVAN
VAV

Figure 3.16: Repairing the banded icosahedron

CHAPTER 3. THREE CONJECTURES

102

<7
X ‘4/'1// ‘ “

Figure 3.17: The doubly-banded icosahedron

3.5. CONCLUSIONS 103

3.5 Conclusions

The lower bound of undevelopable

The concept of the smallest undevelopable convexr polyhedron has been intro-
duced, and while it has been shown that the conjectured structure of the proof
based on this polyhedron is untenable, the idea itself has not been shown to
be invalid. The conjecture that the smallest undevelopable polyhedron can be
shown not to have faces with three, four, or five sides—and hence cannot exist—
remains open.

An intriguing side result of the consideration of this proof was Lemma 3.2,
which shows that if the smallest undevelopable convex polyhedron Py does exist
and has triangular faces which can be achieved through vertex truncation, then
there are very strict requirements—so strict as to seem almost impossible to
meet—on any polyhedron P; which could be truncated to Pp.

The alpha-beta rules

The alpha-beta rules consist of two lemmas and supporting corollaries which de-
scribe a partial ordering of the expansion of the vertices of a convex polyhedron.
It is argued that if these rules are followed, any convex surface can be unfolded;
it is also argued that these rules can always be followed. The proposed proof is
incomplete, but it is supported by considerable statistical evidence: the alpha-
beta rules are outperformed in experimental trials only by the Least Height
Unfolder (Section 4.5.3) and the collision repair algorithms.

To complete the proof of the alpha-beta rules, much work remains. The
backtracking issues which plague the software must be resolved if its data is to
be viewed with any confidence. It will be necessary to extend the rules to cover
the full range of values of «, and Lemma 3.7 must be made more robust in its
proof that previous edges will be left uncrossed.

An alternative definition of V} has been suggested which incorporates AD(P)
into ap. This is worthy of further investigation.

Collision repair

If it were possible to show that every set of collisions in any net of a convex
surface can be repaired, then this would be a proof that all convex polyhedra
are unfoldable.

It has been shown that every individual collision may be repaired. Two
algorithms have been demonstrated which use this repairing operation with
great success:

e Algorithm 4 explores all possible unfoldings, executing a tree search which
seeks to minimize the number of overlaps, potentially visiting every possi-
ble of the polyhedron. Algorithm 4 is very complete but can fail, making it
unsuited to a role in the proof: it is impossible to show that any algorithm
which allows failure can repair every net.

e Algorithm 5 combines the Steepest Ascent Unfolder (Section 4.5.3) with
collision repair to produce an algorithm which has successfully unfolded
hundreds of thousands of randomly-generated simplicial convex polyhedra
and tens of thousands of non-simplicial convex polyhedra, as well as all

104 CHAPTER 3. THREE CONJECTURES

‘known to be hard’ test cases. However, the author has been unable to
argue conclusively why this particular combination of algorithms is so
successful. Although a number of supporting ideas are advanced, the
proof itself remains incomplete.

To complete the proof of collision repair, several formal demonstrations of
supporting concepts are required, such as proofs that a shortest path on a poly-
hedron unfolds without self-intersection and that a face moved in a repair cannot
be placed further upstream than the face which caused it to move. The connec-
tion between outward-facing unfoldings and the fact that a loop never occurs in
Algorithm 5 must be clarified. This is a critical lemma, as it distinguishes the
second approach from the first. Other supporting lemmas and demonstrations
are also called for.

Still, the fact remains that to all available evidence, Algorithm 5 is a fully-
functioning solution. To close the gap now between software implementation and
mathematical proof may prove to be a lengthy task, but it is unquestionably
worth the effort for future researchers in the field.

