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3.2.1 Cut-tree truncation and the smallest undevelopable

polyhedron

It is interesting to conjugate the previous conjecture with the empty sector
property. Consider the example given above: though the truncated vertex was
a leaf-node of the graph, it did not have the empty sector property. If it had,
then by Theorem 2.5 there would have been no overlap.

This shows that

Lemma 3.2 If there exists a smallest ununfoldable polyhedron P0 and P0 has
triangular faces, then every possible polyhedron and cut-graph (P1, T ) which can
be leaf-truncated to produce P0 must lack the empty sector property at the vertex
of truncation.

Proof. Let P0 be the smallest ununfoldable polyhedron.
Assume that P0 has triangular faces. Label one such face 4abc.
Let P abc

1
be the particular polyhedron whose vertex v must be truncated to

generate P0 with face 4abc.2

By assumption on P0, P
abc
1

is developable. The only difference between P abc
1

and P0 is the removal of v and its replacement with abc, so the location in the
plane of every unfolded face in P abc

1
will be the same in the unfolding of P0.

This means that any conflict (and its is known that there is a conflict) must
come from 4abc.

Furthermore, this is a conflict which will appear for every possible valid cut-
graph of P abc

1
, because if there existed a single cut-graph which could unfold

P abc
1

in such a way that the truncation of v → 4abc produced no overlap then
P0 would be unfoldable.

Thus if P0 is the smallest ununfoldable polyhedron and P0 has triangular
face4abc achieved by truncating the vertex v from the smaller polyhedron P abc

1
,

then the vertex v does not have the empty sector property under every possible
cut-graph which unfolds P abc

1
. �

It is somewhat difficult to categorize this result. It does not eliminate the
possibility that there is an undevelopable polyhedron with triangular faces, and
in this sense it is quite weak; and yet, it places an almost absurdly stringent
requirement on the conjectured surface, one which would seem intuitively to be
almost impossible to meet, and in this sense the lemma is surprisingly strong.

3.3 Angular Restrictions to Ensure Developa-

bility

In (Luc06, p.54), Brendan Lucier illustrates the angular requirements for 2-local
overlap, the simplest possible form of self-intersection in the unfolding of a con-
vex polyhedron. Lucier shows that if a branch of the cut-graph ‘curls’ too much
upon itself then overlap becomes possible. Lucier’s goal was to demonstrate
how to create overlap, but it becomes interesting to turn the argument around

2Note the assumption that there exists exactly one such P xxx

1
for each triangular face

4xxx in P0. This is not an accurate assumption, for the reasons detailed above in the first
objection to the conjecture (that is to say, P xxx

1
may not exist at all) but this inaccuracy is

immaterial to the substance of the discussion, and will be disregarded.
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Figure 3.3: Unfolding the branch Φ. The angle between PLQL and PRQR is
αQ. The lesser of the angles from V ′P to each of the developments of PQ is βQ.

and ask: is there an upper bound on how sharply a cut-graph branch can turn,
below which there is no risk of self-intersection?

This section presents an extension of the so-called ‘Alpha-Beta Rules’, a set
of lemmas originally presented to the Sixth International Conference on Curves
and Surfaces, Avignon 2006 as Angular Restrictions to Ensure Developability
(Ben06). The original work was, unfortunately, done before the author became
aware of Lucier’s research, and in their original form the alpha-beta rules were
strictly limited by the particular geometry of the surface to unfold. The material
presented in this section represents a step beyond those restrictions.

At Avignon, the alpha-beta rules were described as being, “designed to show
that it is possible to ‘grow’ a cut-graph from the outermost leaves inwards to
form a complete, spanning tree guaranteed by its incremental assembly to unfold
without overlap.”. Strictly speaking, this was a misleading summary: there is
no ‘time’ in cut-graphs, thus no growth. A more accurate description of the
intent of the alpha-beta rules would have been to say that they are designed to
provide a partial ordering of the vertices of the polyhedron, established by a set
of sequential choices, such that any unfolding which follows this ordering will
be free of overlap.

This section presents the building blocks of a proof. The proof is not com-
plete, and the work which remains to be done is detailed before the end of the
section.

3.3.1 Terminology

Given the nature of the task, much of the following discussion will revolve around
some partially-formed cut-graph and the task of selecting which vertex to add
to it next. It will be assumed that the leaves of the cut-graph are ‘fixed’ and
that each new node to discover will be a step away from the leaves of the graph
and toward the root; the reader might picture a set of streams, emerging from
sources around the slopes of a valley and gradually merging together into larger
rivers. Thus for any subset of the cut-graph, there will be a single vertex which
marks the current ‘river mouth’, with the path downstream as yet unknown.
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As the phrase ‘subset of the cut-graph’ is cumbersome to wield, the shorter
term cut-path will be used here to describe any connected subset of some cut-
graph T which is to be discovered on a convex polyhedron. In the original
publication of (Ben06) a cut-path was limited to being a connected and Hamil-
tonian path, but that restriction is lifted here. A cut-path may contain multiple
leaf nodes of T . All leaf nodes of a cut-path are treated as fixed, and each
cut-path has a single vertex which is the tip of the cut-graph. The tip is the
node the furthest from the leaf nodes; all growth of a cut-path, and union with
other cut-paths, occurs at the tip. In this section, the cut-path currently being
discussed will be labeled ‘Φ’ and its tip will be labeled ‘P ’ (Figure 3.3.)

Let αP be the sum of the angle deficits of the vertices of Φ, up to but
not including the angle deficit of P . Recall that the angle between the two
developments of any edge is exactly the sum of the angle deficits of all cuts
which lead to that edge, and that the total angle deficit of any surface of genus
zero is 4π. αP is not defined if P is a leaf node of Φ (that is, if Φ consists of a
single vertex.)

Let the transverse line of P be defined as the line which passes through the
points PL and PR.

The goal will be to find a new vertex Q to add to Φ beyond P , ‘downstream’
of P . The intent is that the developments of edge PQ should not cross each
other, nor cross the developments of any other edge upstream in Φ.

Let βQ be the turn angle between the cut-path and the developments of PQ.
To speak of the ‘turn angle’ from what could easily be a tree with many leaves
is quite imprecise, and so a new concept is introduced to refine the definition of
β: the virtual root.

Note: In each of the following lemmas, it is assumed that αP is less than π.
The case where π ≤ α ≤ 4π is discussed below.

3.3.2 The virtual root

When unfolded, P will develop to two distinct points in the plane, PL and PR.
These points define a virtual root, V ′P , an idea first encountered as ‘collapsing a
fork’ in the discussion of locally-convex cut graphs in Section 2.6 . V ′P is defined
to be the point3 in the plane which lies on the perpendicular bisector of PLPR

to the right of the ray PL → PR at a distance d from PL and PR chosen such
that the angle between the line segments V ′P PL and V ′P PR is exactly αP .

Given V ′P , for any vertex Q which is being considered for addition to Φ
beyond P , βQ is defined to be the lesser of the two angles βL

Q = ∠V ′P PLQL

(measured counterclockwise) and βR
Q = ∠V ′P PRQR (measured clockwise.) Note

that βQ is always positive.
In many developments of an edge, one edge will ‘turn away’ further than

the other. Formally, if βL
Q is less than βR

Q then the inner development of PQ

3

Calculating V ′

P
:

VP’

P
R

P
L

 P/2 M

D

x y

M = (P L + P R)/2
y = ‖P L − P R‖/2
D = ((P L − P R)× [0, 1, 0])/y
x = (y/2) cot(αP /2)

V ′

P
= M + xD
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Figure 3.4: If βQ > π−αP

2
then there can be no conflict between the left and

right developments of PQ. (a) βQ ≥
π
2
(b) π−αP

2
< βQ < π

2

is PLQL and the outer development of PQ is PRQR; and vice-versa, if the
comparison of the angles is reversed. The inner development of PQ may be
denoted by P IQI .

Let Γ be the circle of radius d centered on V ′P , passing through PL and PR.

3.3.3 Preventing overlap within each pair of unfolded edges

Lemma 3.3 (Alpha-Beta Rule 1) Given a cut-path Φ with tip vertex P , vir-
tual root V ′P , and a potential extension vertex Q to be considered for addition
to the cut-path beyond P , if βQ > π−αP

2
then it is impossible for PLQL and

PRQR to intersect.

Proof.
Lemmas One and Four of (Ben06, p.3) gave a detailed mathematical proof

that if βQ ≥ π−αP

2
then PLQL and PRQR cannot cross; the arguments pre-

sented in the paper hold just as well for V ′P as for V . The proof given was
difficult to interpret and so a more geometric argument is offered here.

Case (a) — βQ ≥
π
2
:

Consider Figure 3.4(a). If αP = 0 then the two developments would be
coincident, but on a convex surface αP > 0. As αP increases, the distance
from PL to PR must increase by the length of the chord of arclength αP on
Γ; simultaneously, Cauchy’s Arm Lemma (p. 18) dictates that as the angle αP

grows, the distance from QR to QL must increase. Thus (up to αP < π) the
two developments can never cross.

Case (b) — π−αP

2
< βQ < π

2
:

If βQ < π
2
then the edge PLQL intersects Γ at some point C (Figure 3.4(b).)

The triangle 4PLCV ′P is an isosceles triangle with angles βQ, βQ, π − 2βQ.
The angle of the triangle at V ′P , between the lines V ′P PL and V ′P PR, is

αP . The angle deficit of P itself does not factor into the angle between the
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developments leading up to P .
If αP > π − 2βQ then PR must lie outside the triangle 4PLCV ′P , in which

case the triangle 4PRDV ′P does not overlap 4PLCV ′P at any point other than
V ′P .

Therefore if βQ > π−αP

2
then PLQL and PRQR cannot intersect. �

Corollary 3.4 Given a cut-path Φ with tip P and potential extension vertex
Q, the angular restrictions to avoid overlap between the developments of PQ
apply only to the inner development, which has the lesser turn angle in the
plane. The remaining development may turn freely: AD(P ) is irrelevant to the
potential overlap of the developments of the edge PQ.

Proof. βQ is defined to be the minimum of the turn angles of the left and
right developments, measured counterclockwise and clockwise respectively; label
these two angles as βL

Q and βR
Q. Lemma 3.3 guarantees that if min(βL

Q, βR
Q) >

(π−α)/2 then there is no risk of overlap between the developments of this edge,
leaving max(βL

Q, βR
Q)–which determines the position of the outer development–

unconstrained. �

Corollary 3.5 Given a cut-path Φ with tip P and potential extension vertex
Q, if β > π−αP

2
then the developments of PQ will not cross the ‘upstream’

developments incident to PL and PR.

Proof. Recall that it has been assumed that αP < π, placing V ′P to the
right of the ray PL → PR. By the same token, the two edge-developments
leading to PL and PR must also lie to the right of PL → PR. The proper
choice of Q must either place the developments of PQ to the left of PL → PR,
or to the right of PL → PR but outside the line segment PLPR. Thus there
can be no intersection between the developments of PQ and the other two
developments incident to PL and PR. �

3.3.4 Extending a cut-path

Having shown that there are broad angular constraints within which an edge
can be cut without risk of overlap, it can now be shown that an edge which
meets these constraints must always exist:

Lemma 3.6 Given a cut-path Φ ending in tip vertex P , there must exist at
least one vertex Q such that βQ > π−αP

2
for the edge PQ.

Proof.
Consider Figure 3.3, in which the transverse line through PLPR divides

the plane in two; call the side containing V ′P the ‘upstream’ side, opposite the
‘downstream’ side. Recall that the angle between any two developed edges which
share a common developed vertex is the sum of the face angles between them.

Then if there were no edges in the downstream half of the plane (Figure 3.5)
it would imply that two edges met at PL or PR with no edge of the polyhedron
between them but also with more than π radians of incident face angle. This
would mean that the face shared by the two edges had > π incident angle at
a vertex, which is impossible on a convex polyhedron. No face of a convex
polyhedron may itself fail to be convex.
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Figure 3.5: There must exist at least one vertex with π/2 ≤ β < 3π/2; for this
not to be the case would imply that a face incident to P was nonconvex.

If there is an edge in the downstream half of the plane, β for that edge would
be between π/2 and 3π/2. Even if α were zero, this would still be sufficient to
guarantee that there is no overlap in cutting that edge. �

3.3.5 Preventing overlap between an edge and previous

edges on the cut-path

Lemma Two of (Ben06, p.4) proved that, under certain stringent conditions,
each new edge added to a cut-path would not cross any development of an edge
already in the cut-path. Unfortunately, those conditions were too strict: the
lemma required that (a) Φ was Hamiltonian and thus had exactly one root,
labelled V ; and (b) that that root was coincident with the virtual root V ′P .

Thus far, Lemmas 3.3 and 3.6 and the associated corollaries have shown
that if Q is chosen to have βQ > π−αP

2
, then PQ will cross neither itself nor

its immediate predecessor in the cut-path, and that there must always exist at
least one Q which fits the bill.

However, the restriction on β is not sufficient to guarantee that there will
be no overlap with prior edges in the cut-path. This is because the restriction
on β is strictly local; to avoid overlap there must also be a global factor guiding
the choice of edge. Inspired by the design of the Anchorable Convex Hull, what
is needed is some central anchoring point or face.

The center of the unfolding, C, is an arbitrarily-chosen point, somewhere
within the border of the net, which will determine a focal direction for the
unfolding. The center of the unfolding may be chosen from the development
of any point on the polyhedral surface. In the software implementation of the
alpha-beta rules in YAMM, the author has chosen to use the center of the
development of the lowest face in the polyhedron, but any point which falls
within the first developed polygon will do.

Lemma 3.7 (Alpha-Beta Rule 2) Let Φ be a cut-path with tip P , where ev-
ery edge already in Φ has been chosen according to the constraint presented in
this lemma. Let Q be a potential extension vertex to Φ, and label the inner
development of PQ (be it the left or right development) as P IQI . Let C be the



3.3. THE ALPHA-BETA RULES 81

C

P
R

Q
R

P
L

Q
L

(a) (b)

Figure 3.6: (a) Each development from P → Q is bounded by concentric rings
around V (left-hand developments are shown on red dotted lines, right-hand on
blue dashed lines) (b) Concentric rings around the center of the radially-oriented
unfolding of the shallow truncated octahedral pyramid

center of the unfolding, a point within the development of the root face of the
unfolding. Then, if Q is chosen such that

• βQ > π−αP

2

• Q maximizes the value of the dot product CP I

‖CP I‖
·

P IQI

‖P IQI‖
above any other

vertex in the 1-ring of P

• The dot product is greater than zero

then the left-hand development of PQ will not cross any left-development of any
edge already in Φ, and the right-hand developments likewise will not cross.

Proof. Each new vertex added to Φ will be chosen such that the vector from
the inner development of P to the associated development of Q is a vector which
points, as nearly as possible, directly away from the center. It has already been
established that at least one Q must exist; this is a criterion for distinguishing
between multiple valid options, should they be available.

The inner development of each new vertex added to Φ will always fall at

a greater distance from C than its predecessor if CP I

‖CP I‖
·

P IQI

‖P IQI‖
> 0 (Fig-

ure 3.6(a).) If each new vertex develops to progressively further radii from C
then they can never cross a preceding edge. �

By the same logic as that used in Lemma 3.6, there must always be at least
one Q which would travel away from C, although it is less clear that such a Q
would also comply with the rules on β.
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(a) Step zero (b) Step one (c) Step two (d) Step eight

Figure 3.7: Four steps in the discovery of a cut-path on a banded icosahedron.
The red dot marks the root face.

3.3.6 Cut-paths and partial unfoldings

Before proceeding, further discussion of what it means to ‘cut an edge’ is war-
ranted. In the scenarios discussed here, the developed edges of a cut are often
treated as simple joined line segments in the plane; but the reader must recall
that they are in reality the outer edge of a polygon which has been unfolded in
its entirety. To cut an edge is to partially determine the relative positions of the
faces nearby, which can be exploited when developing a surface. This insight
has interesting implications.

For example, consider a leaf-node of the cut-graph. Because only one edge
incident to the leaf-node is cut, the fan of faces around the vertex are locked
together; their relative placement is fixed and immutable.

Likewise, consider a vertex cut by two incident edges. The two arcs of faces
separated by the cuts are still bound together within themselves; the positions
of all the faces to the left of the cut are fixed relative to each other, and likewise
for the right.

Recall from p. 11 that a partial unfolding U is a connected subset of the
unfolded faces of a polyhedron. Each cut-path Φ defines a unique partial un-
folding UΦ: UΦ is the unfolded net of faces which are incident to a vertex in Φ.
The edges of Φ are a subset of the perimeter edges of UΦ.

To find the partial unfolding UΦ determined by a cut-path Φ, the partial
unfolding is constructed iteratively. Begin with any face f0 incident to any
vertex V0 which is a leaf-node of Φ. Develop f0 into the plane; this will be
the root face of UΦ. Thereafter, for every face f which is developed, for each
undeveloped face g which is adjacent to f across a shared edge e /∈ Φ where g
is incident to a vertex of f which is also a node of Φ, develop g by gluing its
image to the development of e.

This process is illustrated in Figure 3.7, which shows several early steps in
the discovery of cut-paths to unfold a banded icosahedron. Faces are added as
each new vertex is expanded; in time, the separate cut-paths will merge together
to form a single complete cut-graph.
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3.3.7 Vertex ordering and interdependency

The lemmas presented thus far have focused on the extension of a single cut-
path from a single tip. However, such focus may be misleading, because vertices
are not extended in isolation. Consider: to choose the best outbound edge to
cut from a given vertex P , α and β must be calculated. To find α requires prior
knowledge of every edge which will be cut up to P in the cut-path. Thus the
expansion of P is dependent on the prior expansion of every other vertex in the
cut-path before P .

For example, what would it mean to cut an edge from P to Q if Q has already
been expanded? Doing so changes the value of αQ at Q by adding new incident
cut edges. This in turn could mean that some new edge which had previously not
met the constraints on βQ is now a candidate for expansion, perhaps pointing
more directly away from the center. Then Q’s expansion must be recomputed,
which could mean re-expanding every vertex past Q in the cut-path.

The solution is two-fold: sort vertices by increasing distance from the chosen
center point, and support a limited amount of backtracking.

Sorting vertices for expansion

The goal in sorting vertices by distance is to minimize–or, if possible, eliminate–
the number of occasions where a vertex is expanded by cutting to a vertex which
has already been expanded. As every expansion will point away from the center
according to Lemma 3.3, it makes sense to first choose vertices nearest to the
center. Assume that the unfolding has begun at the lowest face of the polyhedron
F0 and that the center point C of the unfolding has been chosen to be the center
of the development of F0. There are then several sorting options available:

1. Sort vertices lexicographically with height as the primary axis.

2. Sort vertices by geodesic distance from the center of F0, breaking ties with
lexicographic order.

3. Sort vertices by chord-length inside the polyhedron (linear distance in
space)

4. Sort vertices by the minimum of the radii of the developments of each
vertex

5. Sort vertices by the maximum of the radii of the developments of each
vertex

After fairly extensive experimental trial and error, the author has chosen
option (5) for the YAMM software, scoring each vertex by the maximum of the
radii of all of its developments and then sorting all vertices by increasing score,
developing the lowest-scored vertex first. It was found that this method yielded
the lowest error rate.

To implement this sorting method, the vertices of the polyhedron cannot
be scored ahead of time: the radii to which a given vertex develops depend
completely on the developments of prior edges on the cut-path. However, this
is acceptable: with each step of the algorithm, only the nearest unexpanded
vertex needs to be identified, and there will always be unexpanded vertices on
the outside border of the partially-unfolded net until the net is complete.
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Figure 3.8: Three sequential frames from the unfolding of a banded icosahedron
by the alpha-beta rules. In the course of expanding vertex x from frame (a)
to frame (b), several faces are unfolded to the plane which break the β rule at
vertex y. y has not yet been developed; if it had, the edge xy would already
have been cut, and the expansion of x could not have restored it. From frame
(b) to frame (c), y is expanded and the error is automatically rectified: the edge
xy is now part of the cut-graph.

Limited backtracking

Experiment has verified that although sorting method (5) minimizes the average
incidence of cuts ending at already-expanded vertices more effectively than any
of the other options, it does not eliminate it. This is demonstrated in Figure 3.8,
where a partial unfolding grows into–and then out of–self-intersection while
following the alpha-beta rules.

In Figure 3.8(a) the vertex x is about to be expanded. The best outbound
edge is found, cutting downwards and to the left in the figure (the center, not
shown, is upwards and to the right.) In Figure 3.8(b) the expansion of x has
added three more faces to the net, creating a less-than-π/2 turn in the cut-path
around adjacent vertex y which has not yet been expanded. In Figure 3.8(c) the
ordering of expansion has reached y and the best (in fact, only) edge which can
be cut from y is the edge xy; β at y returns to a valid value. The sole concern
is that in expanding y after x, y’s new cut has altered the total α feeding into
x. x should now be re-expanded, although in this case (and in the majority of
cases, during testing) this re-expansion will not change the choice of outbound
edge.

This demonstrates that there is an interdependence between some sets of
vertices: situations where one vertex must be expanded before another, even
though the distance-based ordering would address them in the wrong order.

This dependence relation could presumably be expressed as a dependency
graph between vertices. However, this graph would change from step to step as
cut-paths were added or merged; it seems improbable that a polyhedron-wide
‘dependency map’ could be built for a surface without constructing the unfolding
beforehand. One version of the YAMM software implementation of the alpha-
beta rules explored this possibility. At every step the algorithm would simulate
every possible expansion of each of the vertices on the rim of the partial net and
then choose to expand only from amongst vertices whose ‘best’ expansions would
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not develop faces across edges which another vertex would later need for its own
‘best’ expansion. In testing, this subroutine proved to be cumbersome, difficult
to extend, and insufficient to the task; it only provided ‘lookahead’ for one edge,
where even the banded icosahedron has vertices which are interdependent across
two or even three adjacent edges.

Rather than take the software down the fruitless path of unlimited-depth
predictive search, a simpler solution was instead chosen, which has yielded the
frames shown in Figure 3.8. For every vertex, always cut the ‘best’ edge ac-
cording to the rules for β and C, even if that edge was previously laid down
unbroken by another vertex’s expansion; but if such an edge must be cut, then
backtrack one step and re-expand the impacted second vertex.

Although it will not be formally proved, it seems reasonable to argue that
this backtrack operation must terminate locally without inducing an uncon-
trolled backtrack cascade. This is because each vertex which is re-opened for
backtracking will still cut an edge to point outwards, away from C. The newly-
cut edge should not touch the vertex which caused the backtrack.

3.3.8 When α is greater than π

Throughout this discussion of the new alpha-beta rules, three quarters of the
problem have actually been ignored: the rules above are for when α is less than
π, but the total angle deficit on a closed convex polyhedron is 4π. What of the
rules for π ≤ α ≤ 4π?

It is tempting, in all honesty, to dismiss the question. Consider: unfolding
will begin at the lowest face, with a cut-path extending from each vertex, so
there are already at least three cut-paths from the very first step. If they
stay separated until the top of the surface these cut-paths will each account
for (on average) 4π/3 radians’ worth of total angle deficit; one more cut-path
independently reaching the top and that average drops to π and the rules above
apply.

Another reason to disregard α > π is that overlaps occur so rarely for higher
values of α. The vast, vast majority of overlaps are local events, n-local collisions
for small n; these collisions are overlaps within cut-paths which are small parts
of much larger unfoldings. By the time α has grown to π the two sides of the
development are across the unfolding from each other; clashes between them
could not happen without crossing all of the intervening faces first.

And yet, neither of these objections is sufficient support for arguing that
higher values of α can be disregarded entirely–not if the goal is a robust proof.
To complete the proof, the rules given above must be extended to greater α,
but this will not be attempted in this dissertation.

3.3.9 Weaknesses in the argument

The arguments which have been presented here are not sufficient to constitute
a formal proof that the alpha-beta rules can unfold every convex polyhedron.
The author deeply regrets that the proof remains incomplete.

The known flaws in the argument are:

• The reasoning that there must exist an outbound edge which satisfies both
the rules for β and for C is tenuous: it holds up well for Hamiltonian cut-
paths but it is, in the author’s opinion, not yet strong enough for the
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case where two or more edges of a cut-path flow into a single vertex to be
expanded. Consider the volcano unfolding of a cone: the transverse line
through the developments of the tip are poorly defined, but worse, the
transverse line between any two non-adjacent developments is crossed by
the development of the intervening face.

• Malcolm Sabin has provided an argument4 that without Lemma 3.7, Corol-
lary 3.5 must also require that the outer development of PQ fall to the
right of the transverse line PL → PR.

• Lemma 3.7 is actually very limited: it guarantees that there will be no
overlap between developments on the same side but not between left and
right sides. Without this, the proof is incomplete. The argument seems
feasible: there is a relationship between the ordering of the left-hand and
right-hand (red and blue in Figure 3.6) concentric circles which bound
the developments of each new edge. It may be possible to exploit this
relationship to use Lemma 3.3 and Corollary 3.5, perhaps by showing
that there will never be more than two sequential red rings before the
next blue (or vice versa).

• The reasoning that a vertex Q can be added to extend a cut-graph without
overlap does not show that a second edge can be cut from some other cut-
path to Q without causing intersection between the two cut-paths.

• As described above, the ordering of vertices is still a topic of open research.
It would be nice to be able to justify the choice of the particular ordering
chosen with a better reason than ‘experimental testing’.

• A significant improvement to the backtracking support would be to undo
any face developments as part of a backtrack, in addition to flagging down-
stream vertices for re-appraisal. The difference would be that those down-
stream vertices had already developed their faces and those faces then
influenced the developments of other nearby vertices; all of those vertices
should be rolled back too.

• Formal support for α ≥ π is essential.

• Despite the author’s assurance that backtrack could not induce an infinite
loop, this is not actually quite true: on very rare occasions in testing,
the author found that the topmost face of the surface would circle around
the outer rim of the unfolding, looping forever as one of its vertices was
developed and the other two marked for re-development continually. This
is a software glitch, of course, but it does highlight the need for better-
defined termination guides in the rules.

• There are still a few very rare and hard-to-categorize cases where the
software will fail to find an overlap-free unfolding, despite following the
rules above. These cases seem to always be related to the poorly-defined
termination conditions and issues related to backtracking.

4Personal communications, 2008
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3.3.10 Experimental support

The alpha-beta rules have been implemented in the YAMM testbed with re-
markable, but not perfect, success. The algorithm can unfold extremely ‘dif-
ficult’ surfaces such as the banded third-level subdivision of an icosahedron;
which is notable because it does so entirely without testing for collisions. This
really is a striking result, all the more so because overlap is generated in the
course of the unfolding–but it is repaired as the process continues. In short, the
nets are clearly being generated according to rules which do prevent overlap.

However, there are still difficulties in the software with the final steps of
the unfolding. As the end of work draws near on this dissertation, the final
YAMM implementation of the alpha-beta rules has a success rate of 202,376
successful unfoldings out of 203,556 randomly-generated simplicial convex poly-
hedra, roughly uniformly distributed from 4 to 300 faces. That gives a success
rate of 99.91%: impressive, but not ideal. Analysis of the failure cases suggests
that the flaw lies in the interdependency of vertices in the penultimate stage of
unfolding.

Algorithm A.20, a formal algorithmic declaration of the implementation of
the alpha-beta rules, can be found in Appendix A on page 175.

Figure 3.9 shows three successful unfoldings.
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(a) (b)

(c)

Figure 3.9: (a) A randomly-generated convex polyhedron, unfolded by the
alpha-beta rules. (b) The alpha-beta unfolding of the banded icosahedron. (c)
The alpha-beta unfolding of the doubly-banded icosahedron, a banded icosahe-
dron whose faces have, in turn, been polyhedrally banded. Note the cracks
spreading as directly as possible away from the center of the unfolding.


