
Global Illumination
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Further Graphics

1



Improving on the classic lighting model
● Soft shadows are expensive 
● Shadows of transparent objects require 

further coding or hacks
● Lighting off reflective objects follows 

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color 

bleeding, such as in the Cornell 
Box—notice how the sides of the inner 
cubes are shaded red and green.)

● Fundamentally, the ambient term is a hack 
and the diffuse term is only one step in 
what should be a recursive, self-reinforcing 
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University 
in 1984 by Don Greenberg.  An actual box 
is built and photographed; an identical 
scene is then rendered in software and the 
two images are compared.

2



Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently 
in one direction from another, as a function of the surface itself.  The specular 
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/ 3

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/


Ambient occlusion

● Ambient illumination is a blanket constant that we often add to every 
illuminated element in a scene, to (inaccurately) model the way that 
light scatters off all surfaces, illuminating areas not in direct lighting.

● Ambient occlusion is the technique of 
adding/removing ambient light when 
other objects are nearby and scattered 
light wouldn’t reach the surface.

● Computing ambient occlusion is a 
form of global illumination, in which 
we compute the lighting of scene 
elements in the context of the scene 
as a whole.

Image from “ZBrush® Character Creation: Advanced 
Digital Sculpting, Second Edition”, by Scott Spencer, 20114



Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)5

http://filmicgames.com/archives/6


Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)6

http://filmicgames.com/archives/6


Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)7

http://filmicgames.com/archives/6


Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010, 
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)8

http://filmicgames.com/archives/6


Ambient occlusion - Theory

We can treat the background (the sky) 
as a vast ambient illumination source.  
● For each vertex of a surface, compute 

how much background illumination 
reaches the vertex by computing how 
much sky it can ‘see’

● Integrate occlusion Ap over the 
hemisphere around the normal at the 
vertex:

●   Ap occlusion at point p
●   n normal at point p
●   Vp,𝜔 visibility from p in direction 𝜔
●   Ω integrate over area (hemisphere)

Bottom image credit: “GPU Gems 2”, nVidia, 2005.  Vertices mapped 
to illumination disks for hemispheric illumination mapping. 9



Ambient occlusion - Theory

● This approach is very flexible
● Also very expensive!
● To speed up computation, randomly 

sample rays cast out from each 
polygon or vertex (this is a 
Monte-Carlo method)

● Alternatively, render the scene from 
the point of view of each vertex and 
count the background pixels in the 
render

● Best used to pre-compute per-object 
“occlusion maps”, texture maps of 
shadow to overlay onto each object

● But pre-computed maps fare poorly 
on animated models...

Image credit: “GPU Gems 1”, nVidia, 2004.  
Top: without AO.   Bottom: with AO. 10



Z-
bu

ffe
r -

 to
w

ar
ds

 th
e 

ey
e

Screen Space Ambient Occlusion 
(“SSAO”)

“True ambient occlusion is hard, 
let’s go hacking.”

● Approximate ambient occlusion 
by comparing z-buffer values in 
screen space!

● Open plane = unoccluded
● Closed ‘valley’ in depth buffer = 

shadowed by nearby geometry
● Multi-pass algorithm
● Runs entirely on the GPU

Image: CryEngine 2.  M. Mittring, “Finding Next Gen – 
CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28 11



Screen Space Ambient Occlusion
1. For each visible point on a surface in the scene 

(ie., each pixel), take multiple samples (typically 
between 8 and 32) from nearby and map these 
samples back to screen space

2. Check if the depth sampled at each neighbor is 
nearer to, or further from, the scene sample point

3. If the neighbor is nearer than the scene sample 
point then there is some degree of occlusion

a. Care must be taken not to occlude if the nearer 
neighbor is too much nearer than the scene 
sample point; this implies a separate object, much 
closer to the camera

4. Sum retained occlusions, weighting with an 
occlusion function

Image: StarCraft II.  Advances in Real-Time Rendering in 3D 
Graphics and Games - Course notes, SIGGRAPH 2008 12



0) Base Image1) Base SSAO2) Dilate Horizontal3) Dilate Vertical4) Low Pass Filter (significant blurring)

SSAO example- Uncharted 2

John Hable, GDC 2010, “Uncharted 2: HDR Lighting” 
(filmicgames.com/archives/6) 13

http://filmicgames.com/archives/6


Ambient occlusion and Signed Distance 
Fields

In a nutshell, SSAO tries to estimate 
occlusion by asking, “how far is it to 
the nearest neighboring geometry?”

With signed distance fields, this question 
is almost trivial to answer.

float ambient(vec3 pt, vec3 normal) {
  float a = 1;
  int step = 0;
  
  for (float t = 0.01; t <= 0.1; ) {
    float d = abs(getSdf(pt + t * normal));
    a = min(a, d / t);
    t += max(d, 0.01);
  }
  return a;
}

float ambient(vec3 pt, vec3 normal) {
  return abs(getSdf(pt + 0.1 * normal)) / 0.1;
}

14



Images from Cornell University’s graphics group 
http://www.graphics.cornell.edu/online/research/ 

Radiosity
● Radiosity is an illumination method which 

simulates the global dispersion and 
reflection of diffuse light.
● First developed for describing spectral 

heat transfer (1950s)
● Adapted to graphics in the 1980s at 

Cornell University
● Radiosity is a finite-element approach to 

global illumination: it breaks the scene into 
many small elements (‘patches’) and 
calculates the energy transfer between 
them.

15

http://www.graphics.cornell.edu/online/research/


Radiosity—algorithm
● Surfaces in the scene are divided into patches, small subsections of 

each polygon or object.
● For every pair of patches A, B, compute a view factor (also called a 

form factor) describing how much energy from patch A reaches patch 
B.
● The further apart two patches are in space or orientation, the less light 

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying 

more light to patches with higher relative view factors.  Repeating 
this step will distribute the total 
light across the scene, producing 
a global diffuse illumination model.

16



Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving 
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch 
combined with the total light being reflected by the patch:

This forms a system of linear equations, where…
Bi is the radiosity of patch i; 
Bj is the radiosity of each of the other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.

17



Radiosity—form factors
● Finding form factors can be done 

procedurally or dynamically
● Can subdivide every surface into small 

patches of similar size
● Can dynamically subdivide wherever the 1st 

derivative of calculated intensity rises above 
some threshold.

● Computing cost for a general radiosity 
solution goes up as the square of the number 
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be 

a waste.
● Patches should ideally closely align with 

lines of shadow.

18



Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor 

and walls of the room are dynamically 
subdivided to produce more patches 
where shadow detail is higher.

Images from “Automatic
generation of node spacing 
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/
nspE.htm 

(A) (B)

19

http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm


Radiosity—view factors
One equation for the view factor between 
patches i, j is:

…where θi is the angle between the normal of 
patch i and the line to patch j, r is the distance 
and V(i,j) is the visibility from i to j (0 for 
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj

20



Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a 

half-cube.  The scene is then ‘rendered’ from the point of view of the 
patch, through the walls of the hemicube; V(i,j) is computed for each 
patch based on which patches it can see (and at what percentage) in its 
hemicube.

● A purer method, but more computationally expensive, uses 
hemispheres.

Note: This method can be accelerated 
using modern graphics hardware to 
render the scene.  The scene is 
‘rendered’ with flat lighting, setting the 
‘color’ of each object to be a pointer to 
the object in memory.

21



Radiosity gallery

Teapot (wikipedia)

Image from 
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation: 
a Synthesis of Ray Tracing and Radiosity Methods, 
John R. Wallace, Michael F. Cohen and Donald P. Greenberg 
(Cornell University, 1987)

22



Shadows, refraction and caustics
● Problem: shadow ray strikes 

transparent, refractive object.  
● Refracted shadow ray will 

now miss the light.
● This destroys the validity of 

the boolean shadow test.
● Problem: light passing through 

a refractive object will 
sometimes form caustics (right), 
artifacts where the envelope of 
a collection of rays falling on 
the surface is bright enough to 
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and 
outside of its shadow.
Photo credit: Jan Zankowski

23



Shadows, refraction and caustics

● Solutions for shadows of transparent objects:
● Backwards ray tracing (Arvo)

● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping 24

http://graphics.ucsd.edu/~henrik/


Photon mapping
Photon mapping is the process 
of emitting photons into a 
scene and tracing their paths 
probabilistically to build a 
photon map, a data structure 
which describes the 
illumination of the scene 
independently of its geometry. 

This data is then combined 
with ray tracing to compute the 
global illumination of the 
scene.

Image by Henrik Jensen (2000)

25



Photon mapping—algorithm (1/2)
Photon mapping is a two-pass algorithm:
1.  Photon scattering

A. Photons are fired from each light source, scattered in 
randomly-chosen directions.  The number of photons per 
light is a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer, 
folks.)  Where they strike a surface they are either 
absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction 
and energy of the photon in the photon map.  The photon 
map data structure must support fast insertion and fast 
nearest-neighbor lookup; a kd-tree1 is often used.

Image by Zack Waters

26



Photon mapping—algorithm (2/2)
Photon mapping is a two-pass algorithm:
2.  Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for 

specular but compute diffuse from the photon map and do 
away with ambient completely.

C. Compute radiant illumination by summing the 
contribution along the eye ray of all photons within a 
sphere of radius r of P.

D. Caustics can be calculated directly here from the photon 
map.  For speed, the caustic map is usually distinct from 
the radiance map.

Image by Zack Waters

27



Photon mapping is probabilistic
This method is a great example of 
Monte Carlo integration, in which a 
difficult integral (the lighting 
equation) is simulated by randomly 
sampling values from within the 
integral’s domain until enough 
samples average out to about the 
right answer.
● This means that you’re going to be 

firing millions of photons.  Your 
data structure is going to have to be 
very space-efficient.

http://www.okino.com/conv/imp_jt.htm

28

http://www.okino.com/conv/imp_jt.htm


Photon mapping is probabilistic
● Initial photon direction is random.  Constrained by light 

shape, but random.
● What exactly happens each time a photon hits a solid also 

has a random component:
● Based on the diffuse reflectance, specular reflectance and 

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1.  This gives a probability map:

● Choose a random value p є [0,1].  Where p falls in the 
probability map of the surface determines whether the photon is 
reflected, refracted or absorbed.

0 1pd ps pt
This surface would 
have minimal 
specular highlight.

29



Photon mapping gallery

http://www.pbrt.org/gallery.phphttp://web.cs.wpi.edu/~emmanuel/courses/cs563/writ
e_ups/zackw/photon_mapping/PhotonMapping.html 

http://graphics.ucsd.edu/~henrik/images/global.html 

30

http://www.pbrt.org/gallery.php
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://graphics.ucsd.edu/~henrik/images/global.html


References
Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)

Anisotropic surface

● A. Watt, 3D Computer Graphics - Chapter 7: Simulating light-object interaction: local reflection models
● Eurographics 2016 tutorial - D. Guarnera, G. C. Guarnera,  A. Ghosh, C. Denk, and M. Glencross - BRDF Representation and 

Acquisition

Ambient occlusion and SSAO

● “GPU Gems 2”, nVidia, 2005.  Vertices mapped to illumination.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html 

● Mittring, M. 2007. Finding Next Gen – CryEngine 2.0, Chapter 8, SIGGRAPH 2007 Course 28 – Advanced Real-Time 
Rendering in 3D Graphics and Games
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf

● John Hable’s presentation at GDC 2010, “Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Radiosity

● http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html 
● http://www.graphics.cornell.edu/online/research/ 
● Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, “A Ray Tracing Algorithm for Progressive Radiosity.” In Computer 

Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315–324. 
● Buss, “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter XI), Cambridge University Press (2003)

Photon mapping
● Henrik Jenson, “Global Illumination using Photon Maps”: http://graphics.ucsd.edu/~henrik/ 
● Zack Waters, “Photon Mapping”: 

http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html 

31

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf
http://filmicgames.com/archives/6
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
http://www.graphics.cornell.edu/online/research/
http://graphics.ucsd.edu/~henrik/
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

