
Further Graphics

Splines
Delaunay Triangulations

1
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Drawing a Bezier cubic:
Iterative method

Fixed-step iteration:
● Draw as a set of short line segments equispaced in

parameter space, t:

● Problems:
○ Cannot fix a number of segments that is appropriate for all

possible Beziers: too many or too few segments
○ distance in real space, (x,y), is not linearly related to distance in

parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0,y0) = (x1,y1)

END FOR

2

Drawing a Bezier cubic
...but not very well

∆t=0.2 ∆t=0.1 ∆t=0.05

3

Drawing a Bezier cubic:
Adaptive method

● Subdivision:
● check if a straight line between P0 and P3 is an

adequate approximation to the Bezier
● if so: draw the straight line
● if not: divide the Bezier into two halves, each a

Bezier, and repeat for the two new Beziers
● Need to specify some tolerance for when a

straight line is an adequate approximation
● when the Bezier lies within half a pixel width

of the straight line along its entire length

4

Drawing a Bezier cubic:
Adaptive method

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3,
then...

...draw a line from P0
to P3; otherwise,

...split the curve into two Beziers
covering the first and second
halves of the original and draw
recursively

5

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve
 IF Flat(curve) THEN
 DrawLine(curve)
 ELSE
 SubdivideCurve(curve, left, right)
 DrawCurve(left)
 DrawCurve(right)
 END IF
END DrawCurve

Checking for flatness

P(t) = (1-t) A + t B
AB ⋅ CP(t) = 0
→ (xB - xA)(xP - xC) + (yB - yA)(yP - yC) = 0
→ t = (xB-xA)(xC-xA)+(yB-yA)(yC-yA)

 (xB-xA)2+(yB-yA)2

→ t = AB⋅ AC
 |AB|2

Careful! If t < 0 or t > 1,
use |AC| or |BC| respectively.

A

C

B
P(t)

we need to know this
distance

6

Subdividing a Bezier cubic in two

To split a Bezier cubic into two smaller Bezier cubics:

These cubics will lie atop the halves of their parent exactly,
so rendering them = rendering the parent.

Q0 = P0

Q1 = ½ P0 + ½ P1

Q2 = ¼ P0 + ½ P1 + ¼ P2

Q3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R2 = ¼ P1 + ½ P2 + ¼ P3

R1 = ½ P2 + ½ P3

R0 = P3

7

Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through
four target data points
● Calculate the appropriate Bezier control point locations

from the given data points
● e.g. given points A, B, C, D, the Bezier control points are:
● P0 = B P1 = B + (C-A)/6
● P3 = C P2 = C - (D-B)/6

● Overhauser’s cubic interpolates its controlling points
● good for animation, movies; less for CAD/CAM
● moving a single point modifies four adjacent curve segments
● compare with Bezier, where moving a single point modifies just

the two segments connected to that point

8

Drawing a Bezier cubic:
Signed Distance Fields

1. Iterative implementation
SDF(P) = min(distance from P to each of n
line segments)
● In the demo, 50 steps suffices

2. Adaptive implementation
SDF(P) = min(distance to each sub-curve
whose bounding box contains P)
● Can fast-discard sub-curves whose

bbox doesn’t contain P
● In the demo, 25 subdivisions suffices

9

A Bezier patch can be defined by sixteen control points,
P0,0 … P0,3
⋮ ⋮
P3,0 … P3,3

The weighted average of these 16 points uses
Bernstein polynomials just like the 2D form:

Into the Third Dimension

10

Ed Catmull's "Gumbo" model, composed from patches
(source: https://en.wikipedia.org/wiki/Bézier_surface)

https://en.wikipedia.org/wiki/Ed_Catmull
https://en.wikipedia.org/wiki/B%C3%A9zier_surface

Tensor product ⊗

● The tensor product of two vectors is a
matrix.

● Can take the tensor of two polynomials
● Each coefficient represents a piece of each of the two

original expressions, so the cumulative polynomial
represents both original polynomials completely

11

Bezier patches
● If curve A has n control points and

curve B has m control points then
A⊗B is an (n)x(m) matrix of
polynomials of degree max(n-1, m-1).
● ⊗ = tensor product

● Multiply this matrix against an
(n)x(m) matrix of control points and
sum them all up and you’ve got a
bivariate expression for a rectangular
surface patch, in 3D

● This approach generalizes to triangles
and arbitrary n-gons.

12

Continuity between Bezier patches

Ensuring continuity in 3D:
● C0 – continuous in position

● the four edge control points must match
● C1 – continuous in position and tangent

vector
● the four edge control points must match
● the two control points on either side of each

of the four edge control points must be
co-linear with both the edge point, and each
other, and be equidistant from the edge point

● G1 – continuous in position and tangent
direction the four edge control points must
match the relevant control points must be
co-linear Image credit: Olivier Czarny, Guido Huysmans. Bézier

surfaces and finite elements for MHD simulations.
Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008 13

NURBS in 3D

Like Bezier patches, NURBS
surfaces are the bivariate
generalisation of the univariate
NURBS form:

14

The Voronoi diagram(2) of a set
of points Pi divides space into
‘cells’, where each cell Ci
contains the points in space
closer to Pi than any other Pj.
The Delaunay triangulation is
the dual of the Voronoi
diagram: a graph in which an
edge connects every Pi which
share a common edge in the
Voronoi diagram.

A Voronoi diagram (dotted lines) and its
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet
domain”, “Thiessen polygons”, “plesiohedra”,
“fundamental areas”, “domain of action”…

Voronoi diagrams

15

Delaunay triangulation applet by Paul Chew ©1997—2007
http://www.cs.cornell.edu/home/chew/Delaunay.html

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal
definition of a Voronoi cell C(S,pi) is
 C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points
of the diagram.

Where three or more boundary edges
meet is a Voronoi point. Each Voronoi
point is at the center of a circle (or
sphere, or hypersphere…) which passes
through the associated generating points
and which is guaranteed to be empty of
all other generating points.

16

http://www.cs.cornell.edu/home/chew/Delaunay.html

Delaunay triangulations and equi-angularity
The equiangularity of any
triangulation of a set of points S
is an ascended sorted list of the
angles (α1… α3t) of the triangles.
● A triangulation is said to be

equiangular if it possesses
lexicographically largest
equiangularity amongst all
possible triangulations of S.

● The Delaunay triangulation
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

17

Delaunay triangulations and empty circles
Voronoi triangulations have the
empty circle property: in any
Voronoi triangulation of S, no
point of S will lie inside the
circle circumscribing any three
points sharing a triangle in the
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

18

Delaunay triangulations and convex hulls
The border of the Delaunay
triangulation of a set of points is
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a
set of points in Rn is the planar
projection of a convex hull in
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft

the points upwards, onto a
parabola in 3D
(P’i={x,y,x2+y2}i). The resulting
polyhedral mesh will still be
convex in 3D.

19

Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points
within the surface equidistant to the two or more
nearest points on the surface.
● This can be used to extract a skeleton of the

surface, for (for example) path-planning
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang

Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha

20

http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan

Finding the Voronoi diagram
There are four general classes of
algorithm for computing the Delaunay
triangulation:
● Divide-and-conquer
● Sweep plane

○ Ex: Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing

triangulation until it becomes
Delaunay Fortune’s Algorithm for the plane-sweep construction of the

Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip its
inner edge and it becomes Delaunay. (Image from Wikipedia.)

21

Fortune’s algorithm
1. The algorithm maintains a sweep line and a

“beach line”, a set of parabolas advancing
left-to-right from each point. The beach line
is the union of these parabolas.
a. The intersection of each pair of

parabolas is an edge of the voronoi
diagram

b. All data to the left of the beach line is
“known”; nothing to the right can
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s

algorithm is O(n log n)

22

GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be

rendered on the GPU,
search all points for the
nearest point

Elegant (and 2D only):
● Render each point as a

discrete 3D cone in
isometric projection, let
z-buffering sort it out

23

Voronoi cells in 3D

Silvan Oesterle, Michael Knauss

24

References
Splines, continued
● Les Piegl and Wayne Tiller, The NURBS Book, Springer (1997)
● Alan Watt, 3D Computer Graphics, Addison Wesley (2000)
● G. Farin, J. Hoschek, M.-S. Kim, Handbook of Computer Aided Geometric

Design, North-Holland (2002)

Voronoi diagrams
● M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational

Geometry: Algorithms and Applications”, Springer-Verlag
● http://www.cs.uu.nl/geobook
● http://www.ics.uci.edu/~eppstein/junkyard/nn.html
● http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

25

http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

