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Drawing a Bezier cubic:
Iterative method

Fixed-step iteration:
● Draw as a set of short line segments equispaced in 

parameter space, t:

● Problems:
○ Cannot fix a number of segments that is appropriate for all 

possible Beziers: too many or too few segments
○ distance in real space, (x,y), is not linearly related to distance in 

parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine( (x0,y0), (x1,y1) )
(x0,y0) = (x1,y1)

END FOR
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Drawing a Bezier cubic
...but not very well

∆t=0.2 ∆t=0.1 ∆t=0.05
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Drawing a Bezier cubic:
Adaptive method

● Subdivision:
● check if a straight line between P0 and P3 is an 

adequate approximation to the Bezier
● if so: draw the straight line
● if not: divide the Bezier into two halves, each a 

Bezier, and repeat for the two new Beziers
● Need to specify some tolerance for when a 

straight line is an adequate approximation
● when the Bezier lies within half a pixel width 

of the straight line along its entire length
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Drawing a Bezier cubic:
Adaptive method

e.g. if P1 and P2 both lie 
within half a pixel width of 
the line joining P0 to P3, 
then...

...draw a line from P0 
to P3; otherwise,

...split the curve into two Beziers 
covering the first and second 
halves of the original and draw 
recursively
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Procedure DrawCurve( Bezier curve )
VAR Bezier left, right
BEGIN DrawCurve
  IF Flat(curve) THEN
    DrawLine(curve)
  ELSE
    SubdivideCurve(curve, left, right)
    DrawCurve(left)
    DrawCurve(right)
  END IF
END DrawCurve



Checking for flatness

P(t) = (1-t) A + t B
AB ⋅ CP(t) = 0
→ (xB - xA)(xP - xC) + (yB - yA)(yP - yC) = 0
→ t = (xB-xA)(xC-xA)+(yB-yA)(yC-yA)

  (xB-xA)2+(yB-yA)2

→ t = AB⋅ AC
 |AB|2

Careful!  If t < 0 or t > 1, 
use |AC| or |BC| respectively.

A

C

B
P(t)

we need to know this 
distance
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Subdividing a Bezier cubic in two

To split a Bezier cubic into two smaller Bezier cubics:

These cubics will lie atop the halves of their parent exactly, 
so rendering them = rendering the parent.

Q0 = P0

Q1 = ½ P0 + ½ P1

Q2 = ¼ P0 + ½ P1 + ¼ P2

Q3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R2 = ¼ P1 + ½ P2 + ¼ P3

R1 = ½ P2 + ½ P3

R0 = P3
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Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through 
four target data points
● Calculate the appropriate Bezier control point locations 

from the given data points
● e.g. given points A, B, C, D, the Bezier control points are:
● P0 = B P1 = B + (C-A)/6
● P3 = C P2 = C - (D-B)/6

● Overhauser’s cubic interpolates its controlling points
● good for animation, movies; less for CAD/CAM
● moving a single point modifies four adjacent curve segments
● compare with Bezier, where moving a single point modifies just 

the two segments connected to that point
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Drawing a Bezier cubic:
Signed Distance Fields

1. Iterative implementation
SDF(P) = min(distance from P to each of n 
line segments)
● In the demo, 50 steps suffices 

2. Adaptive implementation
SDF(P) = min(distance to each sub-curve 
whose bounding box contains P)
● Can fast-discard sub-curves whose 

bbox doesn’t contain P
● In the demo, 25 subdivisions suffices
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A Bezier patch can be defined by sixteen control points, 
P0,0 … P0,3 
⋮           ⋮
P3,0 … P3,3 

The weighted average of these 16 points uses 
Bernstein polynomials just like the 2D form:

Into the Third Dimension
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Ed Catmull's "Gumbo" model, composed from patches 
(source: https://en.wikipedia.org/wiki/Bézier_surface)

https://en.wikipedia.org/wiki/Ed_Catmull
https://en.wikipedia.org/wiki/B%C3%A9zier_surface


Tensor product ⊗

● The tensor product of two vectors is a 
matrix.

● Can take the tensor of two polynomials
● Each coefficient represents a piece of each of the two 

original expressions, so the cumulative polynomial 
represents both original polynomials completely
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Bezier patches
● If curve A has n control points and 

curve B has m control points then 
A⊗B is an (n)x(m) matrix of 
polynomials of degree max(n-1, m-1).
● ⊗ = tensor product

● Multiply this matrix against an 
(n)x(m) matrix of control points and 
sum them all up and you’ve got a 
bivariate expression for a rectangular 
surface patch, in 3D

● This approach generalizes to triangles 
and arbitrary n-gons.
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Continuity between Bezier patches

Ensuring continuity in 3D:
● C0 – continuous in position

● the four edge control points must match
● C1 – continuous in position and tangent 

vector
● the four edge control points must match
● the two control points on either side of each 

of the four edge control points must be 
co-linear with both the edge point, and each 
other, and be equidistant from the edge point

● G1 – continuous in position and tangent 
direction the four edge control points must 
match the relevant control points must be 
co-linear Image credit: Olivier Czarny, Guido Huysmans. Bézier 

surfaces and finite elements for MHD simulations.  
Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008 13



NURBS in 3D

Like Bezier patches, NURBS 
surfaces are the bivariate 
generalisation of the univariate 
NURBS form:
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The Voronoi diagram(2) of a set 
of points Pi divides space into 
‘cells’, where each cell Ci 
contains the points in space 
closer to Pi than any other Pj.
The Delaunay triangulation is 
the dual of the Voronoi 
diagram: a graph in which an 
edge connects every Pi which 
share a common edge in the 
Voronoi diagram.

A Voronoi diagram (dotted lines) and its 
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet 
domain”, “Thiessen polygons”, “plesiohedra”, 
“fundamental areas”, “domain of action”…

Voronoi diagrams
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Delaunay triangulation applet by Paul Chew ©1997—2007 
http://www.cs.cornell.edu/home/chew/Delaunay.html 

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal 
definition of a Voronoi cell C(S,pi) is
   C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points 
of the diagram.

Where three or more boundary edges 
meet is a Voronoi point.  Each Voronoi 
point is at the center of a circle (or 
sphere, or hypersphere…) which passes 
through the associated generating points 
and which is guaranteed to be empty of 
all other generating points.
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http://www.cs.cornell.edu/home/chew/Delaunay.html


Delaunay triangulations and equi-angularity
The equiangularity of any 
triangulation of a set of points S 
is an ascended sorted list of the 
angles (α1… α3t) of the triangles.
● A triangulation is said to be 

equiangular if it possesses 
lexicographically largest 
equiangularity amongst all 
possible triangulations of S.

● The Delaunay triangulation 
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and empty circles
Voronoi triangulations have the 
empty circle property: in any 
Voronoi triangulation of S, no 
point of S will lie inside the 
circle circumscribing any three 
points sharing a triangle in the 
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and convex hulls
The border of the Delaunay 
triangulation of a set of points is 
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a 
set of points in Rn is the planar 
projection of a convex hull in 
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft 

the points upwards, onto a 
parabola in 3D 
(P’i={x,y,x2+y2}i). The resulting 
polyhedral mesh will still be 
convex in 3D.
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Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points 
within the surface equidistant to the two or more 
nearest points on the surface.
● This can be used to extract a skeleton of the 

surface, for (for example) path-planning 
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June 
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang 

Approximating the Medial Axis from the Voronoi 
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha       
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http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan


Finding the Voronoi diagram
There are four general classes of 
algorithm for computing the Delaunay 
triangulation:
● Divide-and-conquer
● Sweep plane

○ Ex: Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing 

triangulation until it becomes 
Delaunay Fortune’s Algorithm for the plane-sweep construction of the 

Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip its 
inner edge and it becomes Delaunay.  (Image from Wikipedia.)
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Fortune’s algorithm
1. The algorithm maintains a sweep line and a 

“beach line”, a set of parabolas advancing 
left-to-right from each point.  The beach line 
is the union of these parabolas.
a. The intersection of each pair of 

parabolas is an edge of the voronoi 
diagram

b. All data to the left of the beach line is 
“known”; nothing to the right can 
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the 

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s 

algorithm is O(n log n)
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GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be 

rendered on the GPU, 
search all points for the 
nearest point

Elegant (and 2D only):
● Render each point as a 

discrete 3D cone in 
isometric projection, let 
z-buffering sort it out
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Voronoi cells in 3D

Silvan Oesterle, Michael Knauss 
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