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Computational Geometry
● Polygons meshes are examples of 

discrete (as opposed to continuous) 
representation of geometry

• Many rendering systems limit themselves 
to triangle meshes

• Many require that the mesh be manifold

● In a closed manifold polygon mesh:
• Exactly two triangles meet at each edge
• The faces meeting at each vertex belong to 

a single, connected loop of faces

● In a manifold with boundary:
• At most two triangles meet at each edge
• The faces meeting at each vertex belong to 

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s 
Fundamentals of Computer Graphics, pp. 262-263
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Terminology
● We say that a surface is oriented if:

a. the vertices of every face are stored in a fixed 
order

b. if vertices i, j appear in both faces f1 and f2, then 
the vertices appear in order i, j in one and j, i in 
the other

● We say that a surface is embedded if, 
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space 

with any other vertex, edge or face except where 
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate 
3-space into two parts: a bounded interior 
and an unbounded exterior.

A cube with “anti-clockwise” 
oriented faces

Klein bottle: 
not an 
embedded 
surface.

Also, terrible 
for holding 
drinks.

This slide draws much inspiration from Hughes and Van Dam’s 
Computer Graphics: Principles and Practice, pp. 637-642
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Gaussian curvature on smooth surfaces
Informally speaking, the 
curvature of a surface 
expresses “how flat the 
surface isn’t”.
● One can measure the 

directions in which the 
surface is curving most; these 
are the directions of principal 
curvature, k1 and k2.

● The product of k1 and k2 is the 
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia
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Gaussian curvature on smooth surfaces
Formally, the Gaussian 
curvature of a region on a 
surface is the ratio between 
the area of the surface of the 
unit sphere swept out by the 
normals of that region and 
the area of the region itself.
The Gaussian curvature of a 
point is the limit of this ratio 
as the region tends to zero 
area.

Area on the surface
Area of the projections 
of the normals on the 
unit sphere

aswept
as

0 on a plane

aswept
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)
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Gaussian curvature on discrete surfaces
On a discrete surface, normals do not vary smoothly: the 
normal to a face is constant on the face, and at edges and 
vertices the normal is—strictly speaking—undefined. 
● Normals change instantaneously (as one's point of view travels 

across an edge from one face to another) or not at all (as one's point 
of view travels within a face.) 

The Gaussian curvature of the surface of any polyhedral 
mesh is zero everywhere except at the vertices, where it is 
infinite.
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Normal on a surface

Expressed as a limit, 
The normal of surface S at point P is the limit of the 
cross-product between two (non-collinear) vectors 
from P to the set of points in S at a distance r from P 
as r goes to zero.  [Excluding orientation.]
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Normal at a vertex

Using the limit definition, is the ‘normal’ to a 
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a 

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept 

out on a unit sphere between the two normals of the 
two faces.

● The ‘normal’ to the surface at a vertex is a space swept 
out on the unit sphere between the normals of all of the 
adjacent faces.
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Finding the normal at a vertex

Method 1: Take the 
average of the normals 
of surrounding polygons

Problem: splitting one 
adjacent face into 10,000 
shards would skew the 
average
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Finding the normal at a vertex

Method 2: Take the 
weighted average of the 
normals of surrounding 
polygons, weighted by the 
area of each face
● 2a: Weight each face 

normal by the area of the 
face divided by the total 
number of vertices in the 
face

Problem: Introducing new edges 
into a neighboring face (and 
thereby reducing its area) should 
not change the normal.
Should making a face larger 
affect the normal to the surface 
near its corners?
● Argument for yes: If the vertices 

interpolate the ‘true’ surface, then 
stretching the surface at a 
distance could still change the 
local normals.
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Finding the normal at a vertex

Method 3: Take the 
weighted average of the 
normals of surrounding 
polygons, weighted by each 
polygon’s face angle at the 
vertex

Face angle: the angle α 
formed at the vertex v by 
the vectors to the next and 
previous vertices in the 
face F

Note: In this equation, arccos 
implies a convex polygon. Why?

NF
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Angle deficit – a better solution for 
measuring discrete curvature
The angle deficit AD(v) of a vertex v is defined to be two π 
minus the sum of the face angles α(F) of the adjacent faces

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚
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Angle deficit

High angle deficit Low angle deficit Negative angle deficit
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Hmmm…

Angle deficit
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Genus, Poincaré and the Euler Characteristic
● Formally, the genus g of a closed 

surface is
...“a topologically invariant property of a 

surface defined as the largest number 
of nonintersecting simple closed 
curves that can be drawn on the 
surface without separating it.” 

--mathworld.com
● Informally, it’s the number of 

coffee cup handles in the surface.

Genus 0

Genus 1
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Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border 
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:
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Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces
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The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that 
on a surface S with Euler characteristic χ, the sum of 
the angle deficits of the vertices is 2πχ:

Cube: 
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron: 
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ
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Great for…
● Collision detection between scene 

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization 
method for ray-based rendering 
is the use of bounding volumes.

Nested bounding volumes 
allow the rapid culling of large 
portions of geometry

● Test against the bounding volume 
of the top of the scene graph and 
then work down.
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Popular acceleration structures:
Octrees

Split space into cells and 
list in each cell every object 
in the scene that overlaps 
that cell.

● The ray can skip empty cells
● Requires preprocessing 

stage, but can be partially 
updated for moving scenes

● Popular for voxelized games
● The Octree data structure 

generalizes to arbitrary nxnxn 
rectangular volume 
subdivision
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The BSP tree pre-partitions the scene 
into objects in front of, on, and behind 
a tree of planes.
● This gives an ordering in which to test 

scene objects against your ray
● When you fire a ray into the scene, you 

test all near-side objects before testing 
far-side objects.

Challenges: 
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees

21

A B

C D E F

A

B

C
E

F
D



Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the 
BSP Tree data structure 
● Space is recursively subdivided by 

axis-aligned planes and points on either 
side of each plane are separated in the 
tree.

● The kd-tree has O(n log n) insertion 
time (but this is very optimizable by 
domain knowledge) and O(n2/3) search 
time.

● kd-trees don’t suffer from the 
mathematical slowdowns of BSPs 
because their planes are always 
axis-aligned.

Image from Wikipedia, bless their hearts.
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Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume 
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene
● Retains implicit contents sorting, which 

is nice for traversal Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding 
Interval Hierarchy, Eurographics (2006)
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Convex hull

The convex hull of a set of points is the unique surface 
of least area which contains the set.
● If a set of infinite half-planes have a finite non-empty 

intersection, then the surface of their intersection is a convex 
polyhedron.

● If a polyhedron is convex then for any two faces A and B in 
the polyhedron, all points in B which are not in A lie to the 
same side of the plane containing A.

Every point on a convex hull has non-negative angle 
deficit.
The faces of a convex hull are always convex.
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Finding the convex hull of a set of points

Method 1: For every 
triple of points in the set, 
define a plane P.  If all 
other points in the set lie 
to the same side of P 
(dot-product test) then 
add P to the hull; else 
discard.

Problem 1: this works but 
it’s O(n4).
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Finding the convex hull of a set of points

Method 2:
● Initialize C with a tetrahedron from any four non-colinear points in 

the set.  Orient the faces of C by taking the dot product of the center 
of each face with the average of the vertices of C.

● For each vertex v, 
● For each face f of C, 

● If the dot product of the normal of f with the vector from the center of f to v 
is positive then v is ‘above’ f.  

● If v is above f then delete f and update a (sorted) list of all new border 
vertices.

● Create a new triangular face from v to each pair of border vertices.

Time complexity: O(n2)
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Testing if a point is inside a convex hull

We can generalize Method 2 to test whether a 
point is inside any convex polyhedron.
● For each face, test the dot product of the normal of 

the face with a vector from the face to the point.  If 
the dot is ever positive, the point lies outside.

● The same logic applies if you’re storing normals at 
vertices.
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