
Further Graphics

Left: Jose Maria de Espona, REM INFOGRAFICA, 1997 - Metaball model built with MetaReyes 3.0

Right: CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation, ACM 
Trans. Graph., Vol. 38, No. 4, Article 119. July 2019
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Implicit surfaces 
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Image credit: W. Lorensen. Marching Through the Visible Man, 1995

Signed Distance Fields are just one 
example of the broad class of implicit 
surfaces.

An implicit surface is any description of a 
set of points which satisfy the equation 

F(P) = 0
where P ∈ ℝ3 for a 3D surface. Image credit: Balázs Csebfalvi, Balázs Tóth, Stefan Bruckner, Meister Eduard Gröller

Illumination-Driven Opacity Modulation for Expressive Volume Rendering, 
Proceedings of Vision, Modeling & Visualization 2012, pages 103-109. November 2012.

https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/


Implicit surfaces in modern animation:
Metaballs (sometimes called “metaball modeling”, “force functions”, “blobby modeling”…)

Metaballs are an early (1980s) technique for creating smooth, 
blobby, organic surfaces.
Metaballs leverage the fact that if two functions F(P)=0 and 
G(P)=0 describe implicit surfaces, then F(P)+G(P)=0 describes 
a surface blending both shapes.
Metaball models are decsribed by a set of control points. Each 
control point p generates a ‘field’ of force, which drops off as a 
function F(r) where r is the scalar radius from the control point.  
The implicit surface is the set of all points in space where the 
sum of these field equals a chosen constant:

S = {x∊ℝ3 | ∑pF(|x-p|) = 𝜏}
The surface thus solves the expression:

∑pF(|x-p|) - 𝜏 = 0
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Common force functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
  a(1- 3r2 / b2) 0   ≤ r < b/3

F(r) =   (3a/2)(1-r/b)2 b/3  ≤ r < b
  0 b   ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Metaball modeling 
force functions
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Metaball modeling

Jim Blinn first used 
blobby models to 
animate electron orbital 
shells (1982).
Today animators and 
artists use blobby 
modeling to quickly 
create bumpy, organic 
surfaces.
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Jose Maria de Espona, REM INFOGRAFICA, 1997



Polygonizing implicit surfaces:
Marching Cubes
The Marching cubes algorithm (Lorensen 
& Cline, 1985) finds a set of polygons 
approximating a surface:
1. Fire a ray from any point known to be 

inside the surface.
2. Using Newton’s method or binary 

search, find one place where the ray 
crosses the surface. 

3. Place a cube centered at the 
intersection point: some vertices will 
be ‘hot’ (inside the surface), others 
‘cold’ (outside).

4. While there exists a cube which has at 
least one hot vertex and at least one 
cold vertex on a side and no 
neighboring cube sharing that face, 
create a neighboring cube at that face.

Marching cubes is common in medical imaging such as 
MRI scans.  It was first demonstrated (and patented!) 
by researchers at GE in 1984, modeling a human spine.
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Cubes → Polygons

Each edge of the
cube that has 1 hot
and 1 cold corner,
must be crossed
by the isocline of the surface

The simplest polygonization is 
to add a polygon face joining 
the midpoints of each crossed 
edge (but we can do better)
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Cubes → Polygons
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1 2

8 4

int flags = 
  (isHot(T_L) ? 1 : 0) |
  (isHot(T_R) ? 2 : 0) |
  (isHot(B_R) ? 4 : 0) |
  (isHot(B_L) ? 8 : 0);

switch (flags) {
  case 1 : 
    // left side ←→ top;
  ... 
  case 3 : 
    // left side ←→ right;
  ... 
  case 10 :
    // top ←→ right side,
    // AND,
    // bottom ←→ left side
  ... 
}



Marching cubes squares in action
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Cubes → Polygons
In 3D, there are fifteen possible 
configurations (up to symmetry) of 
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases

Beware: there are ambiguous cases in 
the polygonization which must be 
addressed consistently.  ↓

Images courtesy of Diane Lingrand
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http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html


Smoothing the polygonization
The simplest polygonization uses a polygon face joining the midpoints of each 
crossed edge P1 → P2:

● P = P1 + ½ (P2 - P1)

The implicit surface can be more closely approximated by linearly interpolating 
along the edges of the cube by the weights of the relative values of the force 
function:

● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

Same implicit surface 11



Image credit: J W Laprairie, Mark & Hamilton, Howard. (2018). 
Isovox: A Brick-Octree Approach to Indirect Visualization

Polygonizing implicit surfaces: 
Octrees

The octree is a recursive data structure which 
subdivides space to “home in” on an implicit 
surface.  Each node of an octree is a cube, 
containing 0 or 8 child octrees.
● Each node of the tree occupies a cube in space
● Each node evaluates the force function F(v) at 

each of its vertices v
● Recursive definition: subdivide the cube into 8 

equal-sized children for every node where at 
least 1 corner vertex is inside the surface (‘hot’) 
and at least 1is outside (‘cold’)
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Progressive refinement: Octrees

To display a set of octrees, convert the octrees 
into polygons.

● If some corners are “hot” (inside the surface) and 
others are “cold” (outside) then the isosurface 
must cross the cube edges in between.

● The set of midpoints of adjacent crossed edges 
forms one or more rings, which can be 
triangulated.  The normal is known from the 
inside/outside direction on the edges.

To refine the polygonization, subdivide 
recursively; discard any child whose vertices 
are all inside or all outside.
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Octree refinement in action
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Particle systems
Particle systems are a monte-carlo style 

technique which uses thousands (or 
millions) of tiny finite elements to 
create large-scale structural and 
visual effects.

Particle systems are used for hair, fire, 
cloth, smoke, water, spores, clouds, 
explosions, energy glows, in-game 
special effects and much more.

The basic ideas:
● “Very simple procedural rules can 

create very deep visual effects”
● “If lots of little dots all do 

something coherent, our brains 
will see the thing they do and not 
the dots doing it.”

Still from Large Steps in 
Cloth Simulation, David 
Baraff, Andrew P. Witkin.  
Published in SIGGRAPH 
1998

Screenshot from the game 
Command and Conquer 3 
(2007) by Electronic Arts; 
the “lasers” are particle 
effects.



Particle systems’ honorable history

1962: Ships explode into 
pixel clouds in 
“Spacewar!”, the 2nd 
video game ever.

1978: Ships explode into 
broken lines in 
“Asteroid”

1982: The Genesis Effect 
in “Star Trek II: The 
Wrath of Khan”

Fanboy note: You can play the original Spacewar at 
spacewar.oversigma.com/ -- the actual original game, 
running in a PDP-1 emulator inside a Java applet.

http://spacewar.oversigma.com/


“Position Based Fluids”, SIGGRAPH (2013) - Realtime fluid by Miles Macklin and Matthias Müller (NVIDIA)
Supporting material for Position Based Fluids, Miles Macklin, Matthias Müller, ACM TOG 32(4) (2013)

Particle systems: Fluid simulation

http://www.youtube.com/watch?v=F5KuP6qEuew
http://www.youtube.com/watch?v=F5KuP6qEuew
https://www.youtube.com/watch?v=F5KuP6qEuew
https://mmacklin.com/pbf_sig_preprint.pdf


Particle systems: Cloth simulation

“Interactive Cloth Simulation”, Jim Hugunin - Realtime GPU-driven cloth in Unity game engine
From his talk at Unite 2016, GPU Accelerated High Resolution Cloth Simulation

http://www.youtube.com/watch?v=KBfxnayIlOY
http://www.youtube.com/watch?v=KBfxnayIlOY
https://www.youtube.com/watch?v=KBfxnayIlOY
https://www.youtube.com/watch?v=kCGHXlLR3l8


“CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation”
Video for SIGGRAPH 2019 for the paper CD-MPM: Continuum Damage Material Point Methods for Dynamic
Fracture Animation, ACM Trans. Graph., Vol. 38, No. 4, Article 119. July 2019

Particle systems: Fracture simulation

http://www.youtube.com/watch?v=lNri-x2nK7o&t=248
http://www.youtube.com/watch?v=lNri-x2nK7o&t=248
https://www.youtube.com/watch?v=lNri-x2nK7o


How does it work?

We want to ask,
● “A particle starts life with initial position 

and velocity.  Given obstacles / forces / 
constraints, where will it wind up?”

or in other words…
● Solve this:

○ Given v=dX/dt=f(X(t),t) 
○ Given X(t0) = X0
○ Find X(t) for t > t0

where X(t) is the particle position, dX/dt is the particle velocity, X0 
is its initial position and f(X(t),t) is a (complicated? time- and 
position dependent?) equation that changes particle velocity 
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This is 
an ODE



Particle systems as Ordinary Differential 
Equations: Euler’s Method

There are many ways to solve an ODE.  The simplest (and 
most common in realtime graphics) is Euler’s Method.
● “The forward difference method (Euler’s Method) uses 

the rate values at the end of one timestep as though 
constant in the next timestep.” --Numerical Methods

This is effective, albeit error-prone
← Each step tangent to the path could take us further 
from the true path
← But we will still approximate the integral 
‘reasonably’, for small enough steps
← Error can be bounded by short particle lifetimes, 
damping, and other practical tricks

21Figure from wikipedia

https://www.cl.cam.ac.uk/teaching/1718/NumMethods/nummeths17slides-asprinted.pdf
https://en.wikipedia.org/wiki/Euler_method


Example 1

A simple example--particles affected by gravity:
v(t) = v0 + gt
(This has a known solution, because physics: X(t) = X0 + v0t + 1/2gt2)

Approximated with Euler’s method:
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For each frame:

  For each particle:

velocity = velocity 

+ timestep * gravity

position = position 

+ timestep * velocity

This generalizes nicely to 
array-multiply and array-add 
operations which scale well 
on modern GPU hardware, 
allowing you to update 
velocity and position in a 
single GPU raster operation

Animation: https://www.syncronorm.com/products/depence2/visualization/special-fx/

https://www.syncronorm.com/products/depence2/visualization/special-fx/


Example 2

A more complex example--particles affected by a 
position-dependent wind or force:

v(t) = v0 + wind(x(t))
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For each frame:

  For each particle:

look up wind at position

solve f=ma to find the 
acceleration of the wind on the 
mass of the particle

velocity = velocity 
+ timestep * wind_accel

position = position 

+ timestep * velocity

This still generalizes nicely 
to modern GPU hardware, 
although as complexity rises, 
more advanced GPU 
languages like CUDA may 
be more appropriate

https://docs.google.com/file/d/1u8TLsYUEEP2uZhq-ydzl7KwjOnd4vUBj/preview
https://docs.google.com/file/d/1u8TLsYUEEP2uZhq-ydzl7KwjOnd4vUBj/preview


Common particle system design
1. Particles are generated from an emitter with 

initial mass, position, velocity
a. Emit rate, direction, flow, etc are often specified 

as a bounded random range (monte carlo)
2. Time ticks; at each tick, particles move by 

dt * velocity
a. New particles are generated; expired particles are 

deleted
b. Forces (gravity, wind, etc) accelerate the velocity 

of each particle
c. Collisions and other interactions update velocity

i. Ex: ‘density’ constraints for liquids
ii. Ex: ‘spring’ constraints for cloth

d. Velocity changes position
3. Particles are rendered

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)



Particle systems—rendering
Particles can be rendered as points, textured 

polys, primitive geometry...
● Polygons with alpha-blended images 

make pretty good fire, smoke, etc

Transitioning one particle type to another 
creates realistic interactive effects

● Ex: a ‘rain’ particle becomes an emitter 
for ‘splash’ particles on impact

Implicit surfaces or ellipsoid splatting are 
popular algorithms for rendering particle 
system point clouds as liquid surfaces Ihmsen, Markus & Orthmann, Jens & 

Solenthaler, Barbara & Kolb, Andreas & 
Teschner, Matthias. (2014). SPH Fluids in 
Computer Graphics - Eurographics 
State-of-the-art report



“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

http://www.youtube.com/watch?v=WpspM16kS_g
http://www.youtube.com/watch?v=WpspM16kS_g
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