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NURBS curves

Like Bezier cubics, NURBS curves are parametric
Their shape 1s determined by:

e control points, P,
o the NURBS basis functions, N,
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Properties of NURBS curves

1. The basis functions must sum to 1.0
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Properties of NURBS curves

2. The basis functions are calculated from a knot vector

e This is a non-decreasing sequence of real numbers
o e.g.[0,0,0,1,1,1]
o or[1,2,3,4,5,6]
o or[l.2,3.4,56,56,72,15.6]
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Properties of NURBS curves

3. If the basis functions are Cm-continuous at ¢, then P(?) 1s
guaranteed to be Cm-continuous at ¢

® So continuity depends only on the basis functions, N,
e C(Continuity does not depend on the locations of the control

points
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Properties of NURBS surfaces

NURBS surfaces are a bivariate
generalisation of the univariate

NURBS curve
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NURBS

e NURBS (“Non-Uniform Rational
B-Splines”) are a generalization of

the Bezier curve concept:

e NU: Non-Uniform. The knots in the knot
vector are not required to be uniformly
spaced.

® R: Rational. The spline may be defined
by rational polynomials (homogeneous
coordinates.)

e BS: B-Spline. A generalization of Bezier
splines with controllable degree.
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B-Splines

We’ll build our definition of a B-spline from:

® d, the degree of the curve
k = d+1, called the parameter of the curve
{P,...P },alist of n control points

[2,....t,. 1, a knot vector of (k+n) parameter values (“knots”)
d = k-1 1s the degree of the curve, so k is the number of control
points which influence a single interval

e EXx: acubic (d=3) has four control points (k—4)

There are k+n knots ¢, and ¢, <t forall ¢,
e FEach B-spline is C* = contlnuous
continuity 1s degree minus one,

so a k=3 curve has d=2 and 1s C1
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B-Splines

o A B- sphne curve 18 detined between ¢ . and ¢
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B-Splines
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B-Splines
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Knot vector = {0,1,2,3,4,5}, k=1 — d = 0 (degree = zero) "
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Knot vector = {0,1,2,3,4,5}, k=2 — d =1 (degree = one) "
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Knot vector = {0,1,2,3,4,5}, k=3 — d =2 (degree = two) "



Basis functions really sum to one (k=2)
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Basis functions really sum to one (k=3)

The sum of
the three
functions is
fully defined
(sums to one)
between

t, (t=2.0) and
t, (t=3.0).
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B-Splines
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At k=2 the function is piecewise
linear, depends on P ,P PP , and is

fully defined on [z, ¢,).
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At k=3 the function is piecewise
quadratic, depends on P »P,P, and 1s

fully defined on [7,, ¢)).

Each parameter-k basis function depends on k+1/ knot values; N, depends on ¢,

through ¢,

+

inclusive. So six knots — five discontinuous functions — four piecewise

linear interpolations — three quadratics, interpolating three control points. n=3
control points, d=2 degree, k=3 parameter, n+k=6 knots.

Knot vector = {0,1,2,3,4,5}
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Non-Uniform B-Splines

The knot vector {0,1,2,3,4,5} 1s uniform:
t,, Vt.

L = o
Varying the size of an interval changes the
parametric-space distribution of the weights assigned to
the control functions.

Repeating a knot value reduces the continuity of the
curve in the affected span by one degree.

Repeating a knot & times will lead to a control function
being influenced only by that knot value; the spline will
pass through the corresponding control point with CO
continuity.
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Open vs Closed

e A knot vector which repeats its first and last knot
values k times 1s called open, otherwise closed.

e Repeating the knots k& times 1s the only way to
force the curve to pass through the first or last
control point.

e Without this, the functions N, and N , which
weight P, and P would still lée rampmg up’
and not yet equal to one at the first and last 7.
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Open vs Closed

e Two examples you may recognize:
e /=3, n=3 control points, knots={0,0,0,1,1,1}
e /=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

Weights Spline Weights Spline

Control functions Control functions m
«\\\\ . k';\\
k|2 k|3
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Non-Uniform Rational B-Splines

e Repeating knot values 1s a clumsy way to
control the curve’s proximity to the control

point.

e We want to be able to slide the curve nearer or
farther without losing continuity or introducing
new control points.

e The solution: homogeneous coordinates.

® Associate a “‘weight” with each control point: ..
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Non-Uniform Rational B-Splines

e Recall: [x, y, z, w], — [x /w,y/ o, z/ 0]
o Or:[x,y zl1] = [xow, yo, zu, o]
e The control point
P=(x, ¥, 2)
becomes the homogeneous control point
Py =x0, y0,z0)
e A NURBS in homogeneous coordinates 1s:

PH@) — Z Nzk@)RH; tmin S < tma:c
1=1

H
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Non-Uniform Rational B-Splines

e To convert from homogeneous coords to normal
coordinates:

Ty (t) = > i (wiwi)(Nik(t))

Uy (t) = > s (yiwi) (Nix(t))
2y (t) = D i1 (ziwi) (Nik(t))
w(t) = D (wi)(Nig(t))

(x(O)=xy () lt)
y@) =y, @)/ o) |

2=z, ()




Non-Uniform Rational B-Splines

e A piecewise rational curve is thus defined by:

P<t) — Z Rzk<t)P27 tmint < Tmag

with supf)?ﬁ‘ting rational basis functions:
W N ik (t)
n

Ej:1 w; N (1)

This 1s essentially an average re-weighted by the ’s.

e Such a curve can be made to pass arbitrarily far or near to
a control point by changing the corresponding weight.

Rijk(t) =




Non-Uniform Rational B-Splines in action

Weights Spline

/N '

Control functions

k

1]

knots [0.1.2.3.4.5.6,7.8.9.10

weights [1,1,1.1,1,1,1.1

Update

Demo
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http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
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