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NURBS curves

Like Bezier cubics, NURBS curves are parametric
Their shape is determined by:
● control points, Pi
● the NURBS basis functions, Ni,k
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Properties of NURBS curves

1. The basis functions must sum to 1.0
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Properties of NURBS curves

2. The basis functions are calculated from a knot vector
● This is a non-decreasing sequence of real numbers

○ e.g. [0,0,0,1,1,1]
○ or [1,2,3,4,5,6]
○ or [1.2, 3.4, 5.6, 5.6, 7.2, 15.6]
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Properties of NURBS curves

3. If the basis functions are Cm-continuous at t, then P(t) is 
guaranteed to be Cm-continuous at t

● So continuity depends only on the basis functions, Ni,k 
● Continuity does not depend on the locations of the control 

points

5



Properties of NURBS surfaces

NURBS surfaces are a bivariate 
generalisation of the univariate 
NURBS curve
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NURBS
● NURBS (“Non-Uniform Rational 

B-Splines”) are a generalization of 
the Bezier curve concept:
● NU: Non-Uniform.  The knots in the knot 

vector are not required to be uniformly 
spaced.

● R: Rational.  The spline may be defined 
by rational polynomials (homogeneous 
coordinates.)

● BS: B-Spline.  A generalization of Bezier 
splines with controllable degree.
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B-Splines
We’ll build our definition of a B-spline from:
● d, the degree of the curve
● k = d+1, called the parameter of the curve
● {P1…Pn}, a list of n control points
● [t1,…,tk+n], a knot vector of (k+n) parameter values (“knots”)
● d = k-1 is the degree of the curve, so k is the number of control 

points which influence a single interval
● Ex: a cubic (d=3) has four control points (k=4)

● There are k+n knots ti, and ti ≤ ti+1 for all ti
● Each B-spline is C(k-2) continuous: 

continuity is degree minus one, 
so a k=3 curve has d=2 and is C1

http://www.mikekrummhoefener.com/toy-story-char-grid/ 8

http://www.mikekrummhoefener.com/toy-story-char-grid/


B-Splines

● A B-spline curve is defined between tmin and tmax:

● Ni,k(t) is the basis function of control point Pi for 
parameter k. Ni,k(t) is defined recursively:

9



B-Splines

N1,1(t) N2,1(t) N3,1(t) N4,1(t) …

N1,2(t) N2,2(t) N3,2(t)

N1,3(t) N2,3(t)

N1,4(t)

…

…

…

t1 t2 t3 t4 t5 …
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B-Splines

N5,1(t)=1, 4 ≤ t < 5

N3,1(t)=1, 2 ≤ t < 3

N1,1(t)=1, 0 ≤ t < 1

N4,1(t)=1, 3 ≤ t < 4

N2,1(t)=1, 1 ≤ t < 2

Knot vector = {0,1,2,3,4,5}, k = 1 → d = 0 (degree = zero)

N1,1(t) N2,1(t) N3,1(t) N4,1(t)
0 1 1 2 2 3 3 4

N5,1(t)
54

t1 = 0.0
t2 = 1.0
t3 = 2.0
t4 = 3.0
t5 = 4.0
t6 = 5.0
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N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Knot vector = {0,1,2,3,4,5}, k = 2 → d = 1 (degree = one)

B-Splines
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N1,3(t) N2,3(t) N3,3(t)

Knot vector = {0,1,2,3,4,5}, k = 3 → d = 2 (degree = two)

B-Splines
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N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Basis functions really sum to one (k=2)

=
The sum of 
the four basis 
functions is 
fully defined 
(sums to one) 
between 
t2 (t=1.0) and
t5 (t=4.0).

+ + +
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N1,3(t) N2,3(t) N3,3(t)

Basis functions really sum to one (k=3)

+ +

=

The sum of 
the three 
functions is 
fully defined 
(sums to one) 
between
t3 (t=2.0) and
t4 (t=3.0).
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B-Splines

At k=2 the function is piecewise
linear, depends on P1,P2,P3,P4, and is 
fully defined on [t2, t5).

Each parameter-k basis function depends on k+1 knot values; Ni,k depends on ti 
through ti+k, inclusive.  So six knots → five discontinuous functions → four piecewise 
linear interpolations → three quadratics, interpolating three control points.  n=3 
control points, d=2 degree, k=3 parameter, n+k=6 knots.

At k=3 the function is piecewise
quadratic, depends on P1,P2,P3, and is 
fully defined on [t3, t4).

Knot vector = {0,1,2,3,4,5} 16



Non-Uniform B-Splines
● The knot vector {0,1,2,3,4,5} is uniform: 

ti+1-ti = ti+2-ti+1 ∀ti. 
● Varying the size of an interval changes the 

parametric-space distribution of the weights assigned to 
the control functions.

● Repeating a knot value reduces the continuity of the 
curve in the affected span by one degree.

● Repeating a knot k times will lead to a control function 
being influenced only by that knot value; the spline will 
pass through the corresponding control point with C0 
continuity.
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Open vs Closed

● A knot vector which repeats its first and last knot 
values k times is called open, otherwise closed.
● Repeating the knots k times is the only way to 

force the curve to pass through the first or last 
control point.  

● Without this, the functions N1,k and Nn,k which 
weight P1 and Pn would still be ‘ramping up’ 
and not yet equal to one at the first and last ti.
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Open vs Closed

● Two examples you may recognize:
● k=3, n=3 control points, knots={0,0,0,1,1,1}
● k=4, n=4 control points, knots={0,0,0,0,1,1,1,1}
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Non-Uniform Rational B-Splines

● Repeating knot values is a clumsy way to 
control the curve’s proximity to the control 
point.
● We want to be able to slide the curve nearer or 

farther without losing continuity or introducing 
new control points.

● The solution: homogeneous coordinates.
● Associate a ‘weight’ with each control point: ωi.
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Non-Uniform Rational B-Splines

● Recall: [x, y, z, ω]H → [x / ω, y / ω, z / ω]
● Or: [x, y, z,1] → [xω, yω, zω, ω]H

● The control point 
Pi=(xi, yi, zi) 

becomes the homogeneous control point 
PiH =(xiωi, yiωi, ziωi)

● A NURBS in homogeneous coordinates is:
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Non-Uniform Rational B-Splines
● To convert from homogeneous coords to normal 

coordinates:
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Non-Uniform Rational B-Splines
● A piecewise rational curve is thus defined by:

with supporting rational basis functions:

This is essentially an average re-weighted by the ω’s.
● Such a curve can be made to pass arbitrarily far or near to 

a control point by changing the corresponding weight.
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Non-Uniform Rational B-Splines in action

Demo
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