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CAD, CAM, and a new motivation:
shiny things

Expensive products are sleek and smooth.
— Expensive products are C2 continuous.

Shiny, but reflections are warped Shiny, and reflections are perfect




The drive for smooth CAD/CAM

e Continuity (smooth curves) can
be essential to the perception of
quality.

e The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

e Bezier (Renault) and de Casteljau
(Citroen) invented Bezier curves

in the 1960s. de Boor (GM)
generalized them to B-splines.




History

The term spline comes from T

the shipbuilding industry: long, (\3'(6”’ v ‘T\,Lf“’%
thin strips of wood or metal S . —
would be bent and held in o T

place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.

Wooden splines can be
described by C -continuous
Hermite polynomlals which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)
Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm



http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Bezier cubic

® A Bezier cubic is a function P(t) defined
by four control points:

P(t) = (I-ty’P, + 3t(1-1)°P, + 3£ (I-f)P, + P,

e P and P, are the endpoints of the curve

e P and P, define the other two corners of P,
the bounding polygon.

e The curve fits entirely within the convex
hull of P...P..



Beziers

Cubics are just one example of Bezier splines:

e Linear: P()=(-HP,+tP,
e Quadratic: P(r)= (I-1y°P,+24(1-H)P, + £’P,
o Cubic: P =(1-0°P,+ 3t(1-ty°P, + 32(1-H)P, + £P,

h “n choose i” = n!/il(n-i)!
General: /

P(t) = (n) (1-t)""P, 0<t<1
(
0




Beziers

® You can describe Beziers as nested linear interpolations.
e The linear Bezier is a linear interpolation between two points:

P(t)=(-1) (P)+ () (P)
e The quadratic Bezier is a linear interpolation between two lines:

P(8) = (1-1) ({-)P;+tP)) + (1) ({-0)P +tP,)

e The cubic is a linear interpolation between linear interpolations between
linear interpolations... etc.

e Another way to see Beziers is as a weighted average
between the control points.

(1-0)P+tP ~

P



Bernstein polynomials

\_Y_}

P(t)y=(1-t)y°P,+ \St(]-t)Z’P L+ \3t2(]-t)’P2 + PP,

e " N N B S \ 1 B

e The four control functions are the four Bernstein

polynomials for n=3. ,
* General form: b, ,,(t) = £0(1 — )"
' (%
 Bernstein polynomials in 0 <7< 1 always sum to 1:

n

2 @ =7 =+ -1)) =1

v=1




Drawing a Bezier cubic:
[terative method

Fixed-step iteration:

e Draw as a set of short line segments equispaced in

parameter space, £ [ (.o ,0) = Bezier (0)
FOR t = 0.05 TO 1 STEP 0.05 DO
(x1,yl) = Bezier(t)
DrawLine ( (x0,vy0), (x1,y1l) )
(x0,v0) = (x1,vy1l)
END FOR

e Problems:

o Cannot fix a number of segments that is appropriate for all
possible Beziers: too many or too few segments

o distance in real space, (x,y), 1s not linearly related to distance in
parameter space, ¢




Drawing a Bezier cubic

...but not very well
At=0.2 Ar=0.1 Ar=0.05




Drawing a Bezier cubic:
Adaptive method

e Subdivision:
® check if a straight line between P, and P, is an
adequate approximation to the Bezier
e if so: draw the straight line
e if not: divide the Bezier into two halves, each a
Bezier, and repeat for the two new Beziers

e Need to specify some tolerance for when a

straight line 1s an adequate approximation
e when the Bezier lies within half a pixel width
of the straight line along its entire length




Drawing a Bezier cubic:
Adaptive method

e.g. if P, and P, both lie

Procedure DrawCurve ( zler curve )

VAR Bezier left, fight

BEGIN DrawCurvy
IF Flat (curve) THEN

DrawlLine (curve)

——
ELSE
SubdivideCurve (curve, left, right)
DrawCurve (left) |

DrawCurve (right)
END IF
END DrawCurve

within half a pixel width of
the line joining P, to P,,
then...

...draw a line from P,
to P;; otherwise,

...Split the curve into two
Beziers covering the first and
second halves of the original
and draw recursively

J
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Checking for flatness

we need to know
Pt)=(1-)A+tB this distance
AB - CP(t) =0
= (X=X )(Xp-X) T V-V ) V-V =0
= (X (XX )TV )V DY
(xB'xA) o+ (yB'y A) ’ C

—t=AB  AC

B
Careful! If t<Oort> 1,
use |[AC]| or |BC| respectively.,/ P(2)

A
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Subdividing a Bezier cubic 1n two

To split a Bezier cubic into two smaller Bezier cubics:

0,=P, R,=%P,+%P +%P,+%P,
O, =%P,+%P, R,=Y%P,+"%P,+ %P,
Q,=%P,+ %P+ %P, R, =%P,+%P,

Q,=%P,+%P +%P,+%P, R,=P,

These cubics will lie atop the halves of their parent exactly,
so rendering them = rendering the parent.
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Drawing a Bezier cubic:

Signed Distance Fields

1. Iterative implementation

SDF(P) = min(distance from P to each of n
line segments)

e In the demo, 50 steps suffices
2. Adaptive implementation

SDF(P) = min(distance to each sub-curve
whose bounding box contains P)

e (Can fast-discard sub-curves whose
bbox doesn’t contain P
e In the demo, 25 subdivisions suffices

15



Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through
four target data points

e C(alculate the appropriate Bezier control point locations

from the given data points
e c.g. given points A, B, C, D, the Bezier control points are:
e PO=B P1=B + (C-A)/6
o P3=C P2 =C-(D-B)/6
e Overhauser’s cubic interpolates its controlling points
e good for animation, movies; less for CAD/CAM
e moving a single point modifies four adjacent curve segments
e compare with Bezier, where moving a single point modifies just
the two segments connected to that point
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Types of curve join

e cach curve is smooth within itself

e joins at endpoints can be:

e (', —continuous in both position and tangent vector

e smooth join in a mathematical sense

e (, — continuous in position, tangent vector in same direction

e smooth join in a geometric sense
e (,— continuous in position only
® “corner”

e discontinuous in position

C (mathematical continuity): continuous in all derivatives up to the n™ derivative

G (geometric continuity): each derivative up to the n™ has the same “direction” to
its vector on either side of the join

C =G

17



CO — continuous in

position only

-
@

1
tangent vector

G, — continuous in
position & tangent
~ direction, but not

tangent magnitude

— continuous in position &
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Joining Bezier splines

e To join two Bezier splines with CO
continuity, set P.=Q .

e To join two Bezier splines with C1
continuity, require CO and make the tangent
vectors equal: set P =0 and P.-P =0 -0 .

Q1
QO/

P3

/L
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What if we want to chain Beziers together?

Q, Q, o
We can parameterize this chain
\Q over ¢ by saying that instead of
3 going from O to 1, # moves
/ smoothly through the intervals
P, R, [0,1,2,3]
Co;salgsrcigggllnpggrfgh?es with The curve C(¢) would be:
— (P P.P.P C)=P(t)+ (0<t<1)?1:0)+
Q {Qy Ql, Qz, Q) Q(t-7)+ (1=t<2)?1:0) +
R={R,R,R,, R3} R(t-2) + (2 <t<3)? 1:0)

...with CI continuity...
P3=Q_, P -P.=Q - ,
Q3:%z)» sz_é Sﬁlel [0,1,2,3] is a type of knot vector.
’ 0, 1, 2, and 3 are the knots.
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Tensor product

e The tensor product of two vectors 1s a

matrix. - 4 .4 r
a d ad ae af

b|®|e|=|bd be bf
c f| |ed ce cf

e (an take the tensor of two polynomials.
e FEach coefficient represents a piece of each of the two
original expressions, so the cumulative polynomial
represents both original polynomials completely.
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Bezier patches

e If curve A has n control points and &
curve B has m control points then
A®B is an (n)X(m) matrix of
polynomials of degree max(n-1, m-1).

® © = fensor product

e Multiply this matrix against an
(n)X(m) matrix of control points and
sum them all up and you’ve got a
bivariate expression for a rectangular
surface patch, in 3D

e This approach generalizes to triangles
and arbitrary n-gons.




Bezier patch definition

The Bezier patch defined by sixteen control points,

{’0’0 P0,3:
P3,0 P3’3
1S: 3 3
P(s,t) = Z Z b,.(S)bj(t)P,.J

=0 /=0

Compare this to the 2D version:

P() = io b (NP,




Continuity between Bezier patches

Ensuring continuity in 3D:

e (0 — continuous in position
e the four edge control points must match
e (1 — continuous 1n position and tangent
vector
e the four edge control points must match
e the two control points on either side of each
of the four edge control points must be
co-linear with both the edge point, and each
other, and be equidistant from the edge point
e (1 — continuous in position and tangent
direction the four edge control points must
match the relevant control points must be

Surface S

.~ Surface S’
3

\
\

CO-hnear Image credit: Olivier Czarny, Guido Huysmans. Bézier

Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008

surfaces and finite elements for MHD simulations.
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