—

4

1 1 =

)

Further
Graphics

| P

Alex Beflon, University @f Cambridge — al€x(@bentonian.c

pported in partiily Google JK, d

CAD, CAM, and a new motivation:
shiny things

Expensive products are sleek and smooth.
— Expensive products are C2 continuous.

Shiny, but reflections are warped Shiny, and reflections are perfect

The drive for smooth CAD/CAM

e Continuity (smooth curves) can
be essential to the perception of
quality.

e The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

e Bezier (Renault) and de Casteljau
(Citroen) invented Bezier curves

in the 1960s. de Boor (GM)
generalized them to B-splines.

History

The term spline comes from T

the shipbuilding industry: long, (\3'(6”’ v ‘T\,Lf“’%
thin strips of wood or metal S . —
would be bent and held in o T

place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.

Wooden splines can be
described by C -continuous
Hermite polynomlals which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)
Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Bezier cubic

® A Bezier cubic is a function P(t) defined
by four control points:

P(t) = (I-ty’P, + 3t(1-1)°P, + 3£ (I-f)P, + P,

e P and P, are the endpoints of the curve

e P and P, define the other two corners of P,
the bounding polygon.

e The curve fits entirely within the convex
hull of P...P..

Beziers

Cubics are just one example of Bezier splines:

e Linear: P()=(-HP,+tP,
e Quadratic: P(r)= (I-1y°P,+24(1-H)P, + £’P,
o Cubic: P =(1-0°P,+ 3t(1-ty°P, + 32(1-H)P, + £P,

h “n choose i” = n!/il(n-i)!
General: /

P(t) = (n) (1-t)""P, 0<t<1
(
0

Beziers

® You can describe Beziers as nested linear interpolations.
e The linear Bezier is a linear interpolation between two points:

P(t)=(-1) (P)+ () (P)
e The quadratic Bezier is a linear interpolation between two lines:

P(8) = (1-1) ({-)P;+tP)) + (1) ({-0)P +tP,)

e The cubic is a linear interpolation between linear interpolations between
linear interpolations... etc.

e Another way to see Beziers is as a weighted average
between the control points.

(1-0)P+tP ~

P

Bernstein polynomials

Y}

P(t)y=(1-t)y°P,+ \St(]-t)Z’P L+ \3t2(]-t)’P2 + PP,

e " N N B S \ 1 B

e The four control functions are the four Bernstein

polynomials for n=3. ,
* General form: b, ,,(t) = £0(1 —)"
' (%
 Bernstein polynomials in 0 <7< 1 always sum to 1:

n

2 @ =7 =+ -1)) =1

v=1

Drawing a Bezier cubic:
[terative method

Fixed-step iteration:

e Draw as a set of short line segments equispaced in

parameter space, £ [(.o ,0) = Bezier (0)
FOR t = 0.05 TO 1 STEP 0.05 DO
(x1,yl) = Bezier(t)
DrawLine ((x0,vy0), (x1,y1l))
(x0,v0) = (x1,vy1l)
END FOR

e Problems:

o Cannot fix a number of segments that is appropriate for all
possible Beziers: too many or too few segments

o distance in real space, (x,y), 1s not linearly related to distance in
parameter space, ¢

Drawing a Bezier cubic

...but not very well
At=0.2 Ar=0.1 Ar=0.05

Drawing a Bezier cubic:
Adaptive method

e Subdivision:
® check if a straight line between P, and P, is an
adequate approximation to the Bezier
e if so: draw the straight line
e if not: divide the Bezier into two halves, each a
Bezier, and repeat for the two new Beziers

e Need to specify some tolerance for when a

straight line 1s an adequate approximation
e when the Bezier lies within half a pixel width
of the straight line along its entire length

Drawing a Bezier cubic:
Adaptive method

e.g. if P, and P, both lie

Procedure DrawCurve (zler curve)

VAR Bezier left, fight

BEGIN DrawCurvy
IF Flat (curve) THEN

DrawlLine (curve)

——
ELSE
SubdivideCurve (curve, left, right)
DrawCurve (left) |

DrawCurve (right)
END IF
END DrawCurve

within half a pixel width of
the line joining P, to P,,
then...

...draw a line from P,
to P;; otherwise,

...Split the curve into two
Beziers covering the first and
second halves of the original
and draw recursively

J

12

Checking for flatness

we need to know
Pt)=(1-)A+tB this distance
AB - CP(t) =0
= (X=X)(Xp-X) T V-V) V-V =0
= (X (XX)TV)V DY
(xB'xA) o+ (yB'y A) ’ C

—t=AB AC

B
Careful! If t<Oort> 1,
use |[AC]| or |BC| respectively.,/ P(2)

A

13

Subdividing a Bezier cubic 1n two

To split a Bezier cubic into two smaller Bezier cubics:

0,=P, R,=%P,+%P +%P,+%P,
O, =%P,+%P, R,=Y%P,+"%P,+ %P,
Q,=%P,+ %P+ %P, R, =%P,+%P,

Q,=%P,+%P +%P,+%P, R,=P,

These cubics will lie atop the halves of their parent exactly,
so rendering them = rendering the parent.

14

Drawing a Bezier cubic:

Signed Distance Fields

1. Iterative implementation

SDF(P) = min(distance from P to each of n
line segments)

e In the demo, 50 steps suffices
2. Adaptive implementation

SDF(P) = min(distance to each sub-curve
whose bounding box contains P)

e (Can fast-discard sub-curves whose
bbox doesn’t contain P
e In the demo, 25 subdivisions suffices

15

Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through
four target data points

e C(alculate the appropriate Bezier control point locations

from the given data points
e c.g. given points A, B, C, D, the Bezier control points are:
e PO=B P1=B + (C-A)/6
o P3=C P2 =C-(D-B)/6
e Overhauser’s cubic interpolates its controlling points
e good for animation, movies; less for CAD/CAM
e moving a single point modifies four adjacent curve segments
e compare with Bezier, where moving a single point modifies just
the two segments connected to that point

16

Types of curve join

e cach curve is smooth within itself

e joins at endpoints can be:

e (', —continuous in both position and tangent vector

e smooth join in a mathematical sense

e (, — continuous in position, tangent vector in same direction

e smooth join in a geometric sense
e (,— continuous in position only
® “corner”

e discontinuous in position

C (mathematical continuity): continuous in all derivatives up to the n™ derivative

G (geometric continuity): each derivative up to the n™ has the same “direction” to
its vector on either side of the join

C =G

17

CO — continuous in

position only

-
@

1
tangent vector

G, — continuous in
position & tangent
~ direction, but not

tangent magnitude

— continuous in position &

18

Joining Bezier splines

e To join two Bezier splines with CO
continuity, set P.=Q .

e To join two Bezier splines with C1
continuity, require CO and make the tangent
vectors equal: set P =0 and P.-P =0 -0 .

Q1
QO/

P3

/L

19

What if we want to chain Beziers together?

Q, Q, o
We can parameterize this chain
\Q over ¢ by saying that instead of
3 going from O to 1, # moves
/ smoothly through the intervals
P, R, [0,1,2,3]
Co;salgsrcigggllnpggrfgh?es with The curve C(¢) would be:
— (P P.P.P C)=P(t)+ (0<t<1)?1:0)+
Q {Qy Ql, Qz, Q) Q(t-7)+ (1=t<2)?1:0) +
R={R,R,R,, R3} R(t-2) + (2 <t<3)? 1:0)

...with CI continuity...
P3=Q_, P -P.=Q - ,
Q3:%z)» sz_é Sﬁlel [0,1,2,3] is a type of knot vector.
’ 0, 1, 2, and 3 are the knots.

20

Tensor product

e The tensor product of two vectors 1s a

matrix. - 4 .4 r
a d ad ae af

b|®|e|=|bd be bf
c f| |ed ce cf

e (an take the tensor of two polynomials.
e FEach coefficient represents a piece of each of the two
original expressions, so the cumulative polynomial
represents both original polynomials completely.

21

Bezier patches

e If curve A has n control points and &
curve B has m control points then
A®B is an (n)X(m) matrix of
polynomials of degree max(n-1, m-1).

® © = fensor product

e Multiply this matrix against an
(n)X(m) matrix of control points and
sum them all up and you’ve got a
bivariate expression for a rectangular
surface patch, in 3D

e This approach generalizes to triangles
and arbitrary n-gons.

Bezier patch definition

The Bezier patch defined by sixteen control points,

{’0’0 P0,3:
P3,0 P3’3
1S: 3 3
P(s,t) = Z Z b,.(S)bj(t)P,.J

=0 /=0

Compare this to the 2D version:

P() = io b (NP,

Continuity between Bezier patches

Ensuring continuity in 3D:

e (0 — continuous in position
e the four edge control points must match
e (1 — continuous 1n position and tangent
vector
e the four edge control points must match
e the two control points on either side of each
of the four edge control points must be
co-linear with both the edge point, and each
other, and be equidistant from the edge point
e (1 — continuous in position and tangent
direction the four edge control points must
match the relevant control points must be

Surface S

.~ Surface S’
3

\
\

CO-hnear Image credit: Olivier Czarny, Guido Huysmans. Bézier

Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008

surfaces and finite elements for MHD simulations.

24

References

e Lecs Piegl and Wayne Tiller, The NURBS
Book, Springer (1997)

e Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

e G. Farin, J. Hoschek, M.-S. Kim, Handbook

of Computer Aided Geometric Design,
North-Holland (2002)

25

