
Ray Marching and Signed Distance Fields
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Further Graphics

1

GPU Ray-tracing

Ray tracing 101: “Choose the color of
the pixel by firing a ray through and
seeing what it hits.”

Ray tracing 102:
“Let the pixel make up
its own mind.”

2

GPU Ray-tracing
1. Use a minimal vertex shader (no

transforms) - all work happens in
the fragment shader

2. Set up OpenGL with minimal
geometry, a single quad

3. Bind coordinates to each vertex,
let the GPU interpolate
coordinates to every pixel

4. Implement raytracing in GLSL:
a. For each pixel, compute the ray

from the eye through the pixel,
using the interpolated
coordinates to identify the pixel

b. Run the ray tracing algorithm
for every ray

3

vec3 getRayDir(
 vec3 camDir,
 vec3 camUp,
 vec2 texCoord) {
 vec3 camSide = normalize(
 cross(camDir, camUp));
 vec2 p = 2.0 * texCoord - 1.0;
 p.x *= iResolution.x
 / iResolution.y;
 return normalize(
 p.x * camSide
 + p.y * camUp
 + iPlaneDist * camDir);
}

// Window dimensions
uniform vec2 iResolution;

// Camera position
uniform vec3 iRayOrigin;

// Camera facing direction
uniform vec3 iRayDir;

// Camera up direction
uniform vec3 iRayUp;

// Distance to viewing plane
uniform float iPlaneDist;

// ‘Texture’ coordinate of each
// vertex, interpolated across
// fragments (0,0) → (1,1)
in vec2 texCoord;

GPU Ray-tracing

4

c
a
m
U
p

camSide

camDir

Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) {
 float OdotD = dot(rayorig - pos, raydir);
 float OdotO = dot(rayorig - pos, rayorig - pos);
 float base = OdotD * OdotD - OdotO + radius * radius;

 if (base >= 0) {
 float root = sqrt(base);
 float t1 = -OdotD + root;
 float t2 = -OdotD - root;
 if (t1 >= 0 || t2 >= 0) {
 float t = (t1 < t2 && t1 >= 0) ? t1 : t2;
 vec3 pt = rayorig + raydir * t;
 vec3 normal = normalize(pt - pos);
 return Hit(pt, normal, t);
 }
 }
 return Hit(vec3(0), vec3(0), -1);
}

GPU Ray-tracing: Sphere

5

An alternative to raytracing:
Ray-marching
An alternative to classic ray-tracing is

ray-marching, in which we take a
series of finite steps along the ray until
we strike an object or exceed the
number of permitted steps.

● Also sometimes called ray casting
● Scene objects only need to answer,

 “has this ray hit you? y/n”
● Great solution for data like height fields
● Unfortunately…

• often involves many steps
• too large a step size can lead to lost

intersections (step over the object)
• an if() test in the heart of a for() loop

is very hard for the GPU to optimize

6

GPU Ray-marching:
Signed distance fields
Ray-marching can be dramatically

improved, to impressive realtime
GPU performance, using signed
distance fields:

1. Fire ray into scene
2. At each step, measure distance field

function: d(p) = [distance to nearest
object in scene]

3. Advance ray along ray heading by
distance d, because the nearest
intersection can be no closer than d

This is also sometimes called ‘sphere tracing’. Early paper:
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

7

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

float sphere(vec3 p, float r) {
 return length(p) - r;
}

float cube(vec3 p, vec3 dim) {
 vec3 d = abs(p) - dim;
 return min(max(d.x,
 max(d.y, d.z)), 0.0)
 + length(max(d, 0.0));
}

float cylinder(vec3 p, vec3 dim)
{
 return length(p.xz - dim.xy)
 - dim.z;
}

float torus(vec3 p, vec2 t) {
 vec2 q = vec2(
 length(p.xz) - t.x, p.y);
 return length(q) - t.y;
}

Signed distance fields
An SDF returns the minimum possible

distance from point p to the surface
it describes.

The sphere, for instance, is the distance
from p to the center of the sphere,
minus the radius.

Negative values indicate a sample
inside the surface, and still express
absolute distance to the surface.

8https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

Raymarching signed distance fields
vec3 raymarch(vec3 pos, vec3 raydir) {
 int step = 0;
 float d = getSdf(pos);

 while (abs(d) > 0.001 && step < 50) {
 pos = pos + raydir * d;
 d = getSdf(pos); // Return sphere(pos) or any other
 step++;
 }

 return
 (step < 50) ? illuminate(pos, rayorig) : background;
}

9

Visualizing step count

Final image Distance field

Brighter = more steps, up to 50

10

Combining SDFs
We combine SDF models by choosing
which is closer to the sampled point.

● Take the union of two SDFs by
taking the min() of their
functions.

● Take the intersection of two
SDFs by taking the max() of their
functions.

● The max() of function A and the
negative of function B will return
the difference of A - B.

By combining these binary operations
we can create functions which describe
very complex primitives.

11

Combining SDFs
min(A, B)

(union)

max(A, B)
(intersection)

max(-A, B)
(difference)

12

d = zero Object
centers

di
st

an
ce

Taking the min(), max(), etc of two SDFs yields a
sharp discontinuity. Interpolating the two SDFs with
a smooth polynomial yields a smooth distance curve,
blending the models:

Blending SDFs

float smin(float a, float b) {
 float k = 0.2;
 float h = clamp(0.5 + 0.5 * (b - a) / k, 0,
1);
 return mix(b, a, h) - k * h * (1 - h);
}

Sample blending function (Quilez)

13http://iquilezles.org/www/articles/smin/smin.htm

http://iquilezles.org/www/articles/smin/smin.htm

Transforming SDF geometry

To rotate, translate or scale an SDF model, apply the inverse
transform to the input point within your distance function.
Ex:

This renders a sphere centered at (0, 3, 0).
More prosaically, assemble your local-to-world transform as
usual, but apply its inverse to the pt within your distance
function.

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

float f(vec3 pt) {
 return sphere(pt - vec3(0, 3, 0));
}

14

Transforming SDF geometry
float fScene(vec3 pt) {

 // Scale 2x along X
 mat4 S = mat4(
 vec4(2, 0, 0, 0),
 vec4(0, 1, 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Rotation in XY
 float t = sin(time) * PI / 4;
 mat4 R = mat4(
 vec4(cos(t), sin(t), 0, 0),
 vec4(-sin(t), cos(t), 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Translate to (3, 3, 3)
 mat4 T = mat4(
 vec4(1, 0, 0, 3),
 vec4(0, 1, 0, 3),
 vec4(0, 0, 1, 3),
 vec4(0, 0, 0, 1));

 pt = (vec4(pt, 1) * inverse(S * R * T)).xyz;

 return sdSphere(pt, 1);
}

15

Transforming SDF geometry
The previous example modified ‘all

of space’ with the same transform,
so its distance functions retain
their local linearity.

We can also apply non-uniform
spatial distortion, such as by
choosing how much we’ll modify
space as a function of where in
space we are.

float fScene(vec3 pt) {
 pt.y -= 1;
 float t = (pt.y + 2.5) * sin(time);
 return sdCube(vec3(
 pt.x * cos(t) - pt.z * sin(t),
 pt.y / 2,
 pt.x * sin(t) + pt.z * cos(t)), vec3(1));
}

16

Find the normal to an SDF
Finding the normal: local gradient

The distance function is locally linear and
changes most as the sample moves directly
away from the surface. At the surface, the
direction of greatest change is therefore
equivalent to the normal to the surface.

Thus the local gradient (the normal) can be
approximated from the distance function.

float d = getSdf(pt);
vec3 normal = normalize(vec3(
 getSdf(vec3(pt.x + 0.0001, pt.y, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y + 0.0001, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y, pt.z + 0.0001)) - d));

17

SDF shadows
Ray-marched shadows are

straightforward: march a ray
towards each light source, don’t
illuminate if the SDF ever drops
too close to zero.

Unlike ray-tracing, soft shadows are
almost free with SDFs: attenuate
illumination by a linear function of
the ray marching near to another
object.

18

float shadow(vec3 pt) {
 vec3 lightDir = normalize(lightPos - pt);
 float kd = 1;
 int step = 0;

 for (float t = 0.1;
 t < length(lightPos - pt)
 && step < renderDepth && kd > 0.001;) {
 float d = abs(getSDF(pt + t * lightDir));
 if (d < 0.001) {
 kd = 0;
 } else {
 kd = min(kd, 16 * d / t);
 }
 t += d;
 step++;
 }
 return kd;
}

Soft SDF shadows

By dividing d by t, we
attenuate the strength
of the shadow as its
source is further from
the illuminated point.

19

Repeating SDF geometry
If we take the modulus of a point’s

position along one or more axes
before computing its signed
distance, then we segment space
into infinite parallel regions of
repeated distance. Space near the
origin ‘repeats’.

With SDFs we get infinite repetition
of geometry for no extra cost.

float fScene(vec3 pt) {
 vec3 pos;
 pos = vec3(mod(pt.x + 2, 4) - 2, pt.y, mod(pt.z + 2, 4) - 2);
 return sdCube(pos, vec3(1));
}

20

Repeating SDF geometry

● sdSphere(4, 4)
 = √(4*4+4*4) - 1
 = ~4.5

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

● sdSphere(
 ((4 + 2) % 4) - 2, 4)
 = √(0*0+4*4) - 1
 = 3

● sdSphere(
 ((4 + 2) % 4) - 2,
 ((4 + 2) % 4) - 2)
 = √(0*0+0*0) - 1
 = -1 // Inside surface

21

SDF - Live demo

22

Recommended reading
Seminal papers:

● John C. Hart, “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit
Surfaces”, http://graphics.cs.illinois.edu/papers/zeno

● John C. Hart et al., “Ray Tracing Deterministic 3-D Fractals”,
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

Special kudos to Inigo Quilez and his amazing blog:
● http://iquilezles.org/www/articles/smin/smin.htm
● http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

Other useful sources:
● Johann Korndorfer, “How to Create Content with Signed Distance Functions”,

https://www.youtube.com/watch?v=s8nFqwOho-s
● Daniel Wright, “Dynamic Occlusion with Signed Distance Fields”,

http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf
● 9bit Science, “Raymarching Distance Fields”,

http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

23

http://graphics.cs.illinois.edu/papers/zeno
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf
http://iquilezles.org/www/articles/smin/smin.htm
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.youtube.com/watch?v=s8nFqwOho-s
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

Further Graphics

A
le

x
B

en
to

n,
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 –
 a

le
x@

be
nt

on
ia

n.
co

m

Su
pp

or
te

d
in

 p
ar

t b
y

G
oo

gl
e

U
K

, L
td

“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one

trillion rays w
ere traced in the generation of this im

age. More Fun with Rays

24

Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s

sc
ul

pt
ur

e"
 b

y
Tr

ev
or

 G
. Q

ua
yl

e
(2

00
8)

"POV Planet" by Casey Uhrig (2004)

25

http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/

The basic algorithm is
straightforward, but there's
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit

on the back of his business card. (circa 1983)

Ray-tracing / ray-marching:
It doesn’t take much code

26

A ray is defined parametrically as

P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the
ray’s direction, a unit-length vector.

We can expand this equation to three dimensions, x, y and z:

x(t) = xE + txD
y(t) = yE + tyD t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays

27

A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0

Substituting equation (α) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv_1) + yN(yE+tyD-yv_1) + zN(zE+tzD-zv_1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons

28

Half-planes method
● Each edge defines an infinite half-plane

covering the polygon. If the point P lies
in all of the half-planes then it must be in
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.

○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…

v…
vn

vi

vi+1

P

eeR

Point in convex polygon

29

Barycentric coordinates (tA,tB,tC) are a
coordinate system for describing the location of
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’

placed at (A,B,C) respectively so that the
center of gravity of the triangle lies at P.

● (tA,tB,tC) are proportional to the subtriangle
areas of the three vertices.
○ The area of a triangle is ½ the length of the cross

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates

30

Barycentric coordinates

31

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
vec3 barycentric(vec3 p, vec3 a, vec3 b, vec3 c) {
 vec3 v0 = b - a, v1 = c - a, v2 = p - a;
 float d00 = dot(v0, v0);
 float d01 = dot(v0, v1);
 float d11 = dot(v1, v1);
 float d20 = dot(v2, v0);
 float d21 = dot(v2, v1);
 float denom = d00 * d11 - d01 * d01;
 float v = (d11 * d20 - d01 * d21) / denom;
 float w = (d00 * d21 - d01 * d20) / denom;
 float u = 1.0 - v - w;
 return vec3(u, v, w);
}

Code credit: Christer Ericson, Real-Time Collision Detection (2004)
(adapted to GLSL for this lecture)

Hard shadows

To simulate shadows with rays, fire a ray from
P towards each light Li. If the ray hits another
object before the light, then discard Li in the
sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.

32

D

O

P

L
1

Softer shadows
Shadows in nature are not sharp because light sources are not
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration:

a coarse simulation of an integral over a space
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.

33

R
ay

s p
er

 sh
ad

ow
 te

st
: 2

0

Light radius: 1

All images anti-aliased with 4x supersampling.
Distance to light in all images: 20 units

R
ay

s p
er

 sh
ad

ow
 te

st
: 1

00

Light radius: 5

Softer shadows

34

E

P

θ

L

S

Spotlights

D

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by
(max(L•S,0))m.

● Raising m will tighten the spotlight,
but leave the edges soft.

● If you’d prefer a hard-edged spotlight
of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

35

1 Or sound waves or other waves

Transparency and Refraction

To add transparency, generate and trace a new
transparency ray with ET=P, DT=D.
For realism, DT should deviate (slightly) from D. The angle of
incidence of a ray of light where it strikes a surface is the acute
angle between the ray and the surface normal.
The refractive index of a material is a measure
of how much the speed of light1 is reduced
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

36

E D
DT

Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of
light at the interface between two materials is equal to the
inverse ratio of the refractive indices of the materials is equal
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and René Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

37

Refraction

Refraction for rays

Using Snell’s Law and the angle of
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

E
D

P

P’

N
θ1

θ2

38

Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in

[-1,1].
● We call this the angle of total

internal reflection: light is trapped
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal
reflection

39

Fresnel term

Example from:
https://www.scratchapixel.com/lessons/3d-basic-rendering/intro
duction-to-shading/reflection-refraction-fresnel

● Light is more likely to be
reflected rather than
transmitted near grazing angles

● This effect is modelled by Fresnel equation, which gives
the probability that a photon is reflected rather than
transmitted (or absorbed)

40

Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS
the misidentification of a signal frequency,

introducing distortion or error.
"high-frequency sounds are prone to aliasing"
2. COMPUTING
the distortion of a reproduced image so that

curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

41

Aliasing

-

=

42

Anti-aliasing
Fundamentally, the problem with aliasing is that we’re sampling an infinitely
continuous function (the color of the scene) with a finite, discrete function (the
pixels of the image).

One solution to this is super-sampling. If we fire multiple rays through each
pixel, we can average the colors
computed for every ray together
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

43

http://www.svi.nl/

Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit:
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 44

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Great for…
● Collision detection between scene

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization
method for ray-based rendering
is the use of bounding volumes.

Nested bounding volumes
allow the rapid culling of large
portions of geometry

● Test against the bounding
volume of the top of the scene
graph and then work down.

45

Types of bounding volumes
The goal is to accelerate volumetric tests, such as “does the ray hit
the cow?” → speed trumps precision

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders
● common in early FPS games

46

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.

● Pro: Rays can skip
subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

47

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that
cell.

● Pro: The ray can skip empty
cells

● Con: Depending on cell size,
objects may overlap many
filled cells or you may waste
memory on many empty cells

● Popular for voxelized games
(ex: Minecraft)

48

The BSP tree pre-partitions the scene
into objects in front of, on, and behind
a tree of planes.
● This gives an ordering in which to test

scene objects against your ray
● When you fire a ray into the scene, you

test all near-side objects before testing
far-side objects.

Challenges:
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees

49

A B

C D E F

A

B

C
E

F
D

Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by

axis-aligned planes and points on either side
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

50

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

51

References
Intersection testing
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing
Peter Shirley, Steve Marschner. Fundamentals of Computer Graphics. Taylor & Francis,
21 Jul 2009
Hughes, Van Dam et al. Computer Graphics: Principles and Practice. Addison Wesley,
3rd edition (10 July 2013)

52

http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html

Further
Graphics

A Brief Introduction to
Computational Geometry

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
53

Terminology
● We’ll be focusing on discrete (as

opposed to continuous) representation
of geometry; i.e., polygon meshes

• Many rendering systems limit themselves
to triangle meshes

• Many require that the mesh be manifold

● In a closed manifold polygon mesh:
• Exactly two triangles meet at each edge
• The faces meeting at each vertex belong to

a single, connected loop of faces

● In a manifold with boundary:
• At most two triangles meet at each edge
• The faces meeting at each vertex belong to

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s
Fundamentals of Computer Graphics, pp. 262-263

54

Terminology
● We say that a surface is oriented if:

a. the vertices of every face are stored in a fixed
order

b. if vertices i, j appear in both faces f1 and f2, then
the vertices appear in order i, j in one and j, i in
the other

● We say that a surface is embedded if,
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space

with any other vertex, edge or face except where
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate
3-space into two parts: a bounded interior
and an unbounded exterior.

A cube with “anti-clockwise”
oriented faces

Klein bottle:
not an
embedded
surface.

Also, terrible
for holding
drinks.

This slide draws much inspiration from Hughes and Van Dam’s
Computer Graphics: Principles and Practice, pp. 637-642

55

Normal at a vertex

Expressed as a limit,
The normal of surface S at point P is the limit of the
cross-product between two (non-collinear) vectors
from P to the set of points in S at a distance r from P
as r goes to zero. [Excluding orientation.]

56

Normal at a vertex

Using the limit definition, is the ‘normal’ to a
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept

out on a unit sphere between the two normals of the
two faces.

● The ‘normal’ to the surface at a vertex is a space swept
out on the unit sphere between the normals of all of the
adjacent faces.

57

Finding the normal at a vertex
Take the weighted average
of the normals of
surrounding polygons,
weighted by each polygon’s
face angle at the vertex

Face angle: the angle α
formed at the vertex v by the
vectors to the next and
previous vertices in the face F

Note: In this equation, arccos
implies a convex polygon. Why?

NF

58

Gaussian curvature on smooth surfaces
Informally speaking, the
curvature of a surface
expresses “how flat the
surface isn’t”.
● One can measure the

directions in which the
surface is curving most; these
are the directions of principal
curvature, k1 and k2.

● The product of k1 and k2 is the
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia

59

Gaussian curvature on smooth surfaces
Formally, the Gaussian
curvature of a region on a
surface is the ratio between
the area of the surface of the
unit sphere swept out by the
normals of that region and
the area of the region itself.
The Gaussian curvature of a
point is the limit of this ratio
as the region tends to zero
area.

Area on the surface
Area of the projections
of the normals on the
unit sphere

anus
as

0 on a plane

anus
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)

60

Gaussian curvature on discrete surfaces
On a discrete surface, normals do not vary smoothly: the
normal to a face is constant on the face, and at edges and
vertices the normal is—strictly speaking—undefined.
● Normals change instantaneously (as one's point of view travels across an

edge from one face to another) or not at all (as one's point of view travels
within a face.)

The Gaussian curvature of the surface of any polyhedral
mesh is zero everywhere except at the vertices, where it is
infinite.

61

Angle deficit – a better solution for
measuring discrete curvature
The angle deficit AD(v) of a vertex v is defined to be two π
minus the sum of the face angles of the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚

62

Angle deficit

High angle deficit Low angle deficit Negative angle deficit

63

Hmmm…

Angle deficit

64

Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed
surface is
...“a topologically invariant property of a

surface defined as the largest number
of nonintersecting simple closed
curves that can be drawn on the
surface without separating it.”

--mathworld.com
● Informally, it’s the number of

coffee cup handles in the surface.

Genus 0

Genus 1

65

Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:

66

Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces

67

The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that
on a surface S with Euler characteristic χ, the sum of
the angle deficits of the vertices is 2πχ:

Cube:
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron:
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ

68

“Any simple closed curve C divides the points of the
plane not on C into two distinct domains (with no
points in common) of which C is the common
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838

-1922) in his Cours d'Analyse.
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B
must cross C.

A
B

C

The Jordan curve theorem

69

Note that the Jordan curve theorem can be extended to
a curve on a sphere, or anything which is topologically
equivalent to a sphere.
“Any simple closed curve on a sphere separates the

surface of the sphere into two distinct regions.”

A

B

The Jordan curve theorem on a sphere

70

The Voronoi diagram(2) of a set
of points Pi divides space into
‘cells’, where each cell Ci
contains the points in space
closer to Pi than any other Pj.
The Delaunay triangulation is
the dual of the Voronoi
diagram: a graph in which an
edge connects every Pi which
share a common edge in the
Voronoi diagram.

A Voronoi diagram (dotted lines) and its
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet
domain”, “Thiessen polygons”, “plesiohedra”,
“fundamental areas”, “domain of action”…

Voronoi diagrams

71

Delaunay triangulation applet by Paul Chew ©1997—2007
http://www.cs.cornell.edu/home/chew/Delaunay.html

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal
definition of a Voronoi cell C(S,pi) is
 C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points
of the diagram.

Where three or more boundary edges
meet is a Voronoi point. Each Voronoi
point is at the center of a circle (or
sphere, or hypersphere…) which passes
through the associated generating points
and which is guaranteed to be empty of
all other generating points.

72

http://www.cs.cornell.edu/home/chew/Delaunay.html

Delaunay triangulations and equi-angularity

The equiangularity of any
triangulation of a set of points
S is a sorted list of the angles
(α1… α3t) of the triangles.
● A triangulation is said to be

equiangular if it possesses
lexicographically largest
equiangularity amongst all
possible triangulations of S.

● The Delaunay triangulation
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

73

Delaunay triangulations and empty circles

Voronoi triangulations have
the empty circle property: in
any Voronoi triangulation of S,
no point of S will lie inside the
circle circumscribing any three
points sharing a triangle in the
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

74

Delaunay triangulations and convex hulls
The border of the Delaunay
triangulation of a set of points is
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a
set of points in Rn is the planar
projection of a convex hull in
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft

the points upwards, onto a
parabola in 3D
(P’i={x,y,x2+y2}i). The
resulting polyhedral mesh will
still be convex in 3D.

75

Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points
within the surface equidistant to the two or more
nearest points on the surface.
● This can be used to extract a skeleton of the

surface, for (for example) path-planning
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang

Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha

76

http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan

Fortune’s algorithm
1. The algorithm maintains a sweep line and a

“beach line”, a set of parabolas advancing
left-to-right from each point. The beach line
is the union of these parabolas.
a. The intersection of each pair of

parabolas is an edge of the voronoi
diagram

b. All data to the left of the beach line is
“known”; nothing to the right can
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s

algorithm is O(n log n)

77

GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be

rendered on the GPU,
search all points for the
nearest point

Elegant (and 2D only):
● Render each point as a

discrete 3D cone in
isometric projection, let
z-buffering sort it out

78

References
Gaussian Curvature:

http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html

The Poincaré Formula:
http://mathworld.wolfram.com/PoincareFormula.html

Jordan curves:
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom
.html

Voronoi diagrams:
M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational
Geometry: Algorithms and Applications”, Springer-Verlag,
http://www.cs.uu.nl/geobook/

http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

79

http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html
http://mathworld.wolfram.com/PoincareFormula.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

Further
Graphics

Bezier Curves
and Surfaces

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
80

CAD, CAM, and a new motivation:
shiny things

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.

81

The drive for smooth CAD/CAM

● Continuity (smooth curves) can
be essential to the perception of
quality.

● The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

● Bezier (Renault) and de Casteljau
(Citroen) invented Bezier curves
in the 1960s. de Boor (GM)
generalized them to B-splines.

82

History
The term spline comes from
the shipbuilding industry: long,
thin strips of wood or metal
would be bent and held in
place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.
Wooden splines can be
described by Cn-continuous
Hermite polynomials which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

83

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Beziers cubic
● A Bezier cubic is a function P(t) defined

by four control points:

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● P0 and P3 are the endpoints of the curve
● P1 and P2 define the other two corners of

the bounding polygon.
● The curve fits entirely within the convex

hull of P0...P3.

P0

P1 P2

P3

84

Beziers

Cubics are just one example of Bezier splines:
● Linear: P(t) = (1-t)P0 + tP1

● Quadratic: P(t) = (1-t)2P0 + 2t(1-t)P1 + t2P2

● Cubic: P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

...

General:
“n choose i” = n! / i!(n-i)!

85

Beziers

● You can describe Beziers as nested linear interpolations:
● The linear Bezier is a linear interpolation between two points:

P(t) = (1-t) (P0) + (t) (P1)
● The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) ((1-t)P0+tP1) + (t) ((1-t)P1+tP2)
● The cubic is a linear interpolation between linear interpolations between

linear interpolations… etc.
● Another way to see Beziers is as a weighted average

between the control points.

P0

P1

P2
(1-t)P0+tP1

(1-t)P1+tP2

P(t)

86

Bernstein polynomials

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● The four control functions are the four Bernstein
polynomials for n=3.

• General form:
•

• Bernstein polynomials in 0 ≤ t ≤ 1 always sum to 1:

87

Drawing a Bezier cubic:
Iterative method

Fixed-step iteration:
● Draw as a set of short line segments equispaced in

parameter space, t:

● Problems:
○ Cannot fix a number of segments that is appropriate for all

possible Beziers: too many or too few segments
○ distance in real space, (x,y), is not linearly related to distance in

parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0,y0) = (x1,y1)

END FOR

88

Drawing a Bezier cubic
...but not very well

∆t=0.2 ∆t=0.1 ∆t=0.05

89

Drawing a Bezier cubic:
Adaptive method

● Subdivision:
● check if a straight line between P0 and P3 is an

adequate approximation to the Bezier
● if so: draw the straight line
● if not: divide the Bezier into two halves, each a

Bezier, and repeat for the two new Beziers
● Need to specify some tolerance for when a

straight line is an adequate approximation
● when the Bezier lies within half a pixel width

of the straight line along its entire length

90

Drawing a Bezier cubic:
Adaptive method (continued)

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve
 IF Flat(curve) THEN
 DrawLine(curve)
 ELSE
 SubdivideCurve(curve, left, right)
 DrawCurve(left)
 DrawCurve(right)
 END IF
END DrawCurve

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3,
then...

...draw a line from P0
to P3; otherwise,

...split the curve into two
Beziers covering the first and
second halves of the original
and draw recursively

91

Checking for flatness

P(t) = (1-t) A + t B
AB ⋅ CP(t) = 0
→ (xB - xA)(xP - xC) + (yB - yA)(yP - yC) = 0
→ t = (xB-xA)(xC-xA)+(yB-yA)(yC-yA)

 (xB-xA)2+(yB-yA)2

→ t = AB⋅ AC
 |AB|2

Careful! If t < 0 or t > 1,
use |AC| or |BC| respectively.

A

C

B
P(t)

we need to know
this distance

92

Subdividing a Bezier cubic in two

To split a Bezier cubic into two smaller Bezier cubics:

These cubics will lie atop the halves of their parent exactly,
so rendering them = rendering the parent.

Q0 = P0

Q1 = ½ P0 + ½ P1

Q2 = ¼ P0 + ½ P1 + ¼ P2

Q3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R2 = ¼ P1 + ½ P2 + ¼ P3

R1 = ½ P2 + ½ P3

R0 = P3

93

Drawing a Bezier cubic:
Signed Distance Fields

1. Iterative implementation
SDF(P) = min(distance from P to each of n
line segments)
● In the demo, 50 steps suffices

2. Adaptive implementation
SDF(P) = min(distance to each sub-curve
whose bounding box contains P)
● Can fast-discard sub-curves whose

bbox doesn’t contain P
● In the demo, 25 subdivisions suffices

94

Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through
four target data points
● Calculate the appropriate Bezier control point locations

from the given data points
● e.g. given points A, B, C, D, the Bezier control points are:
● P0 = B P1 = B + (C-A)/6
● P3 = C P2 = C - (D-B)/6

● Overhauser’s cubic interpolates its controlling points
● good for animation, movies; less for CAD/CAM
● moving a single point modifies four adjacent curve segments
● compare with Bezier, where moving a single point modifies just

the two segments connected to that point

95

● each curve is smooth within itself
● joins at endpoints can be:

● C1 – continuous in both position and tangent vector
● smooth join in a mathematical sense

● G1 – continuous in position, tangent vector in same direction
● smooth join in a geometric sense

● C0 – continuous in position only
● “corner”

● discontinuous in position

Cn (mathematical continuity): continuous in all derivatives up to the nth derivative

Gn (geometric continuity): each derivative up to the nth has the same “direction” to
its vector on either side of the join

Cn ⇒ Gn

Types of curve join P3

Q0

96

C1 – continuous in position &
tangent vector

C
1

G1 – continuous in
position & tangent
direction, but not
tangent magnitude

G
1

C0 – continuous in
position only

C
0

97

Joining Bezier splines

● To join two Bezier splines with C0
continuity, set P3=Q0.

● To join two Bezier splines with C1
continuity, require C0 and make the tangent
vectors equal: set P3=Q0 and P3-P2=Q1-Q0.

P3
Q0

Q1

P2
98

What if we want to chain Beziers together?

Consider a chain of splines with
many control points…

P = {P0, P1, P2, P3}
Q = {Q0, Q1, Q2, Q3}
R = {R0, R1, R2, R3}

…with C1 continuity…
P3=Q0, P2-P3=Q0-Q1
Q3=R0, Q2-Q3=R0-R1

We can parameterize this chain
over t by saying that instead of
going from 0 to 1, t moves
smoothly through the intervals
[0,1,2,3]

The curve C(t) would be:
 C(t) = P(t) • ((0 ≤ t <1) ? 1 : 0) +

Q(t-1) • ((1 ≤ t <2) ? 1 : 0) +
R(t-2) • ((2 ≤ t <3) ? 1 : 0)

[0,1,2,3] is a type of knot vector.
0, 1, 2, and 3 are the knots.

P3

Q0

Q1

P2

Q3

Q2

R1

R0

99

B-Splines and NURBS
1. A Bezier cubic is a polynomial of degree three: it must have four control

points, it must begin at the first and end at the fourth, and it assumes that all
four control points are equally important.

2. B-spline curves are a piecewise parameterization of a series of splines, that
supports an arbitrary number of control points and lets you specify the
degree of the polynomial which interpolates them.

3. NURBS (“Non-Uniform Rational B-Splines”) are a generalization of Beziers.
● NU: Non-Uniform. The knots in the knot vector are not required to be

uniformly spaced.
● R: Rational. The spline may be defined by rational polynomials

(homogeneous coordinates.)
● BS: B-Spline. A generalized Bezier spline with controllable degree.

100

The Bezier patch defined by sixteen control points,
P0,0 … P0,3
⋮ ⋮
P3,0 … P3,3

is:

Compare this to the 2D version:

Bezier patch definition

101

Bezier patches
● If curve A has n control points and

curve B has m control points then
A⊗B is an (n)x(m) matrix of
polynomials of degree max(n-1, m-1).
● ⊗ = tensor product

● Multiply this matrix against an
(n)x(m) matrix of control points and
sum them all up and you’ve got a
bivariate expression for a rectangular
surface patch, in 3D

● This approach generalizes to triangles
and arbitrary n-gons.

102

Tensor product

● The tensor product of two vectors is a
matrix.

● Can take the tensor of two polynomials.
● Each coefficient represents a piece of each of the two

original expressions, so the cumulative polynomial
represents both original polynomials completely.

103

Continuity between Bezier patches

Ensuring continuity in 3D:
● C0 – continuous in position

● the four edge control points must match
● C1 – continuous in position and tangent

vector
● the four edge control points must match
● the two control points on either side of each

of the four edge control points must be
co-linear with both the edge point, and each
other, and be equidistant from the edge point

● G1 – continuous in position and tangent
direction the four edge control points must
match the relevant control points must be
co-linear Image credit: Olivier Czarny, Guido Huysmans. Bézier

surfaces and finite elements for MHD simulations.
Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008 104

References

● Les Piegl and Wayne Tiller, The NURBS
Book, Springer (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● G. Farin, J. Hoschek, M.-S. Kim, Handbook
of Computer Aided Geometric Design,
North-Holland (2002)

105

Further Graphics

Subdivision
Surfaces

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
106

Problems with Bezier (NURBS) patches
● Joining spline patches

with Cn continuity
across an edge is
challenging.

● What happens to
continuity at corners
where the number of
patches meeting isn’t
exactly four?

● Animation is tricky:
bending and blending
are doable, but not easy.

Sadly, the world isn’t made up of shapes that
can always be made from one
smoothly-deformed rectangular surface.

107

● The solution:
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding:
we want guaranteed
continuity, without
having to build
everything out of
rectangular patches.
• Applications include

CAD/CAM, 3D
printing, museums and
scanning, medicine,
movies…

Geri’s Game, by Pixar (1997)

108

Subdivision surfaces

● Instead of ticking a parameter t along
a parametric curve (or the parameters
u,v over a parametric grid),
subdivision surfaces repeatedly refine
from a coarse set of control points.

● Each step of refinement adds new
faces and vertices.

● The process converges to a smooth
limit surface.

(Catmull-Clark in action)109

Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two
separate groups during 1978:
• Doo and Sabin found a biquadratic surface
• Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn
[Butterfly subdivision], 1990) led to tools suitable
for CAD/CAM and animation

110

Subdivision surfaces and the movies

● Pixar first demonstrated subdivision
surfaces in 1997 with Geri’s Game.
• Up until then they’d done everything in

NURBS (Toy Story, A Bug’s Life.)
• From 1999 onwards everything they did was

with subdivision surfaces (Toy Story 2,
Monsters Inc, Finding Nemo...)

• Two decades on, it’s all heavily customized.

● It’s not clear what Dreamworks uses,
but they have recent patents on
subdivision techniques.

111

Useful terms
● A scheme which describes a 1D curve (even if that curve is

travelling in 3D space, or higher) is called univariate, referring to
the fact that the limit curve can be approximated by a polynomial
in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control
points is called an interpolating scheme.

● A scheme which moves away from its
original control points, converging to a
limit curve or surface nearby, is called an
approximating scheme.

Control surface for Geri’s head112

How it works

● Example: Chaikin curve subdivision (2D)
• On each edge, insert new control points at ¼ and

¾ between old vertices; delete the old points
• The limit curve is C1 everywhere (despite the poor

figure.)

113

Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will
have twice as many control points as before.
Notice the different treatment of generating odd and
even control points.
Borders (terminal points) are a special case.

←Even

←Odd

114

Notation

Chaikin can be written in vector notation as:

115

Notation
● The standard notation compresses the scheme to a kernel:

• h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of

the matrix form can be used to prove the continuity of the
subdivision limit surface.

• The details of analysis are fascinating, lengthy, and sadly
beyond the scope of this course

● The limit curve of Chaikin is a quadratic B-spline!

116

Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel

117

Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A +

(3/16) B +
(3/16) C +
(1/16) D

This replaces every old vertex
with four new vertices.
The limit surface is biquadratic,
C1 continuous everywhere.

P

A
B

C
D

9

118

Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces

119

Catmull-Clark

● Catmull-Clark is a bivariate approximating
scheme with kernel h=(1/8)[1,4,6,4,1].
• Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge

120

Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule

121

Catmull-Clark in action

122

Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
123

Extraordinary vertices
● Catmull-Clark and Doo-Sabin both

operate on quadrilateral meshes.
• All faces have four boundary edges
• All vertices have four incident edges

● What happens when the mesh contains
extraordinary vertices or faces?

• For many schemes, adaptive weights exist
which can continue to guarantee at least
some (non-zero) degree of continuity, but
not always the best possible.

● CC replaces extraordinary faces with
extraordinary vertices; DS replaces
extraordinary vertices with extraordinary
faces.

Detail of Doo-Sabin at cube
corner

124

Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex
rules generalized for
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in

the one-ring:
3/2n2

● Interleaved neighbors in
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision
Surfaces”, Ignacio Castaño, SIGGRAPH 2008 125

Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts

10

11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)

126

Loop subdivision

Loop subdivision in action. The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html

127

Creases

Extensions exist for most schemes to support
creases, vertices and edges flagged for partial or
hybrid subdivision.

Still from “Volume
Enclosed by
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg,
Ulrich Reif, Scott
Schaefer, Joe Warren
http://vixra.org/pdf/1
406.0060v1.pdf

128

http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf

Continuous level of detail

For live applications (e.g. games) can compute
continuous level of detail, typically as a
function of distance:

Level 5 Level 5.2 Level 5.8 129

Direct evaluation of the limit surface

● In the 1999 paper Exact Evaluation Of
Catmull-Clark Subdivision Surfaces at Arbitrary
Parameter Values, Jos Stam (now at
Alias|Wavefront) describes a method for finding
the exact final positions of the CC limit surface.
• His method is based on calculating the tangent and normal

vectors to the limit surface and then shifting the control
points out to their final positions.

• What’s particularly clever is that he gives exact evaluation
at the extraordinary vertices. (Non-trivial.)

130

Bounding boxes and convex hulls for
subdivision surfaces
● The limit surface is (the weighted average of (the weighted

averages of (the weighted averages of (repeat for eternity…))))
the original control points.

● This implies that for any scheme where all weights are positive
and sum to one, the limit surface lies entirely within the
convex hull of the original control points.

● For schemes with negative weights:
• Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter

space of the absolute values of the weights.
• For a scheme with negative weights, L will exceed 1.
• Then the limit surface must lie within the convex hull of the

original control points, expanded unilaterally by a ratio of (L-1).

131

Splitting a subdivision surface
Many algorithms rely on subdividing a surface and
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the
limit surface will change (see right)
● Need to include all control points from the previous

generation, which influence the limit surface in this
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 132

Subdivision Schemes—A partial list
● Approximating

• Quadrilateral
• (1/2)[1,2,1]
• (1/4)[1,3,3,1]

(Doo-Sabin)
• (1/8)[1,4,6,4,1]

(Catmull-Clark)
• Mid-Edge

• Triangles
• Loop

● Interpolating
• Quadrilateral

• Kobbelt
• Triangle

• Butterfly
• “√3” Subdivision

Many more exist, some much
more complex
This is a major topic of
ongoing research

133

References
Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary
Topological Meshes.” Computer Aided Design, 1978.
Dyn, N., J. A. Gregory, and D. A. Levin. “Butterfly Subdivision Scheme for
Surface Interpolation with Tension Control.” ACM Transactions on
Graphics. Vol. 9, No. 2 (April 1990): pp. 160–169.
Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using
Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.
Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.”
Ph.D. diss., California Institute of Technology, 1997
Ignacio Castano, “Next-Generation Rendering of Subdivision Surfaces.” Siggraph
’08, http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
Dennis Zorin’s SIGGRAPH course, “Subdivision for Modeling and Animation”,
http://www.mrl.nyu.edu/publications/subdiv-course2000/

134

http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
http://www.mrl.nyu.edu/publications/subdiv-course2000/

Further Graphics

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Advanced
Shader

Techniques

135

Lighting and Shading (a quick refresher)

Recall the classic lighting equation:
● I = kA + kD(N•L) + kS(E•R)

n

where…
● kA is the ambient lighting coefficient of the object or scene
● kD(N•L) is the diffuse component of surface illumination (‘matte’)
● kS(E•R)

n is the specular component of surface illumination (‘shiny’)
where R = L - 2(L•N)N

We compute color by vertex or by polygon fragment:
● Color at the vertex: Gouraud shading
● Color at the polygon fragment: Phong shading

Vertex shader outputs are interpolated across fragments, so
code is clean whether we’re interpolating colors or normals.

136

Shading with shaders

For each vertex our Java code will need to provide:
● Vertex position
● Vertex normal
● [Optional] Vertex color, kA / kD / kS, reflectance,

transparency…
We also need global state:
● Camera position and orientation, represented as a

transform
● Object position and orientation, to modify the vertex

positions above
● A list of light positions, ideally in world coordinates

137

Shader sample –
Gouraud shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;
uniform vec3 lightPosition;

in vec4 v;
in vec3 n;

out vec4 color;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 p = (modelToWorld * v).xyz;
 vec3 n = normalize(normalToWorld * n);
 vec3 l = normalize(lightPosition - p);
 float ambient = 0.2;
 float diffuse = 0.8 * clamp(0, dot(n, l), 1);

 color = vec4(purple
 * (ambient + diffuse), 1.0);
 gl_Position = modelToScreen * v;
}

#version 330

in vec4 color;

out vec4 fragmentColor;

void main() {
 fragmentColor = color;
}

Diffuse lighting
 d = kD(N•L)

expressed as a shader

138

Shader sample –
Phong shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;

in vec4 v;
in vec3 n;

out vec3 position;
out vec3 normal;

void main() {
 normal = normalize(
 normalToWorld * n);
 position =
 (modelToWorld * v).xyz;
 gl_Position =
 modelToScreen * v;
}

#version 330

uniform vec3 eyePosition;
uniform vec3 lightPosition;

in vec3 position;
in vec3 normal;

out vec4 fragmentColor;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 n = normalize(normal);
 vec3 l = normalize(lightPosition - position);
 vec3 e = normalize(position - eyePosition);
 vec3 r = reflect(l, n);

 float ambient = 0.2;
 float diffuse = 0.4 * clamp(0, dot(n, l), 1);
 float specular = 0.4 *
 pow(clamp(0, dot(e, r), 1), 2);

 fragmentColor = vec4(purple *
 (ambient + diffuse + specular), 1.0);
}

a = kA
d = kD(N•L)
s = kS(E•R)n

GLSL includes handy helper methods for
illumination such as reflect()--perfect for
specular highlights.

139

Shader sample – Gooch shading

Image source: “A
Non-Photorealistic
Lighting Model For
Automatic Technical
Illustration”, Gooch,
Gooch, Shirley and
Cohen (1998).
Compare the Gooch
shader, above, to the
Phong shader (right).

Gooch shading is an example of non-realistic
rendering. It was designed by Amy and Bruce
Gooch to replace photorealistic lighting with a
lighting model that highlights structural and
contextual data.
● They use the term of the conventional lighting

equation to choose a map between ‘cool’ and
‘warm’ colors.

● This is in contrast to conventional illumination
where lighting simply scales the underlying
surface color.

● Combined with edge-highlighting through a
second renderer pass, this creates 3D models
which look like engineering schematics.

140

Shader sample –
Gooch shading

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform mat4 modelToCamera;
uniform mat4 modelToScreen;
uniform mat3 normalToCamera;

vec3 LightPosition = vec3(0, 10, 4);

in vec4 vPosition;
in vec3 vNormal;

out float NdotL;
out vec3 ReflectVec;
out vec3 ViewVec;

void main()
{
 vec3 ecPos = vec3(modelToCamera * vPosition);
 vec3 tnorm = normalize(normalToCamera * vNormal);
 vec3 lightVec = normalize(LightPosition - ecPos);
 ReflectVec = normalize(reflect(-lightVec, tnorm));
 ViewVec = normalize(-ecPos);
 NdotL = (dot(lightVec, tnorm) + 1.0) * 0.5;
 gl_Position = modelToScreen * vPosition;
}

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform vec3 vColor;

float DiffuseCool = 0.3;
float DiffuseWarm = 0.3;
vec3 Cool = vec3(0, 0, 0.6);
vec3 Warm = vec3(0.6, 0, 0);

in float NdotL;
in vec3 ReflectVec;
in vec3 ViewVec;

out vec4 result;

void main()
{
 vec3 kcool = min(Cool + DiffuseCool * vColor, 1.0);
 vec3 kwarm = min(Warm + DiffuseWarm * vColor, 1.0);
 vec3 kfinal = mix(kcool, kwarm, NdotL);

 vec3 nRefl = normalize(ReflectVec);
 vec3 nview = normalize(ViewVec);
 float spec = pow(max(dot(nRefl, nview), 0.0), 32.0);

 if (gl_FrontFacing) {
 result = vec4(min(kfinal + spec, 1.0), 1.0);
 } else {
 result = vec4(0, 0, 0, 1);
 }
}

141

Shader sample – Gooch shading
In the vertex shader source, notice the use of the built-in ability to
distinguish front faces from back faces:

if (gl_FrontFacing) {...
This supports distinguishing front faces (which should be shaded

smoothly) from the edges of back faces (which will be drawn in heavy
black.)
In the fragment shader source, this is used to choose the weighted color
by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL);
Here mix() is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor is NdotL, the
lighting value.

142

Shader sample – Gooch shading

143

Texture mapping

Real-life objects rarely consist of perfectly smooth,
uniformly colored surfaces.

Texture mapping is the art of applying an image to a
surface, like a decal. Coordinates on the surface are
mapped to coordinates in the texture.

144

Procedural texture
Instead of relying on discrete

pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

 tx = (int) 10 * u

 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u
coordinate by 4 to repeat the brick texture
four times around the torus.

145

Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the renderer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

146

Non-color textures: normal mapping

147

// ...
const vec3 CENTER = vec3(0, 0, 1);
// ...

void main() {
 bool isOutsideFace =
 (length(position - CENTER) > 1);
 vec3 color = isOutsideFace ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);
}

Procedural texturing in the
fragment shader
// ...
const vec3 CENTER = vec3(0, 0, 1);
// ...

void main() {
 bool isOutsideFace =
 (length(position - CENTER) > 1);
 bool isMouth =
 (length(position - CENTER) < 0.75)
 && (position.y <= -0.1);

 vec3 color = (isMouth || isOutsideFace)
 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);
}

(Code truncated for brevity--again, check out
the source on github for how I did the curved
mouth and oval eyes.)

// ...
const vec3 CENTER = vec3(0, 0, 1);
const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);
// ...

void main() {
 bool isOutsideFace = (length(position - CENTER) >
1);
 bool isEye = (length(position - LEFT_EYE) < 0.1)
 || (length(position - RIGHT_EYE) < 0.1);
 bool isMouth = (length(position - CENTER) < 0.75)
 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)
 ? BLACK : YELLOW;
 fragmentColor = vec4(color, 1.0);
}

148

Advanced surface effects
● Ray-tracing, ray-marching!
● Specular highlights
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

149

Antialiasing with OpenGL

Antialiasing remains a challenge with
hardware-rendered graphics, but image quality
can be significantly improved through GPU
hardware.
● The simplest form of hardware

anti-aliasing is Multi-Sample
Anti-Aliasing (MSAA).

● “Render everything at higher resolution,
then down-sample the image to blur
jaggies”

● Enable MSAA in OpenGL with
glfwWindowHint(GLFW_SAMPLES, 4);

150

Antialiasing with OpenGL: MSAA

151

Non-anti-aliased (left) vs
4x supersampled (right)
polygon edge, using
OpenGL’s built-in
supersampling support.
Images magnified 4x.

Antialiasing on the GPU
MSAA suffers from high memory constraints, and can be
very limiting in high-resolution scenarios (high demand
for time and texture access bandwidth.)
Eric Chan at MIT described an optimized hardware-based
anti-alising method in 2004:
1. Draw the scene normally
2. Draw wide lines at the objects' silhouettes

a. Use blurring filters and precomputed luminance tables to blur
the lines’ width

3. Composite the filtered lines into the framebuffer
using alpha blending

This approach is great for polygonal models, tougher for
effects-heavy visual scenes like video games

152

Antialiasing on
the GPU

153

More recently, NVIDIA’s Fast
Approximate Anti-Aliasing
(“FXAA”) has become popular because it optimizes MSAA’s limitations.
Abstract:
1. Use local contrast (pixel-vs-pixel) to find edges (red), especially those

subject to aliasing.
2. Map these to horizontal (gold) or vertical (blue) edges.
3. Given edge orientation, the highest contrast pixel pair 90 degrees to the edge

is selected (blue/green)
4. Identify edge ends (red/blue)
5. Re-sample at higher resolution along identified edges, using sub-pixel

offsets of edge orientations
6. Apply a slight blurring filter based on amount of detected sub-pixel aliasing

Image from
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf

https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf

Antialiasing technique: adaptive analytic prefiltering.
● The precision with which an edge is rendered to the screen is

dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in GLSL by the methods dFdx(F) and
dFdy(F).
● These methods return the derivative with respect to X and Y, in screen

space, of some variable F.
● These are commonly used in choosing the filter width for antialiasing

procedural textures.

Preventing aliasing in texture reads

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 154

Antialiasing texture reads with Signed
Distance Fields

Conventional anti-aliasing in texture reads can only smooth pixels immediately
adjacent to the source values.

Signed distance fields represent monochrome texture data as a distance map
instead of as pixels. This allows per-pixel smoothing at multiple distances.

155

3.6 2.8 2 1 -1

3.1 2.2 1.4 1 -1

2.8 2 1 -1 -1.4

2.2 1.4 1 -1 -2

2 1 -1 -1.4 -2.2

2 1 -1 -2 -2.8

Antialiasing texture reads with Signed
Distance Fields

The bitmap becomes a height map.
Each pixel stores the distance to the closest

black pixel (if white) or white pixel (if
black). Distance from white is negative.

Conventional antialiasing Signed distance field 156

Antialiasing texture reads with Signed
Distance Fields

Conventional bilinear filtering
computes a weighted average of
color, but an SDF computes a
weighted average of distances.

This means that a small step away
from the original values we find
smoother, straighter lines where
the slope of the isocline is
perpendicular to the slope of the
source data.

By smoothing the isocline of the
distance threshold, we achieve
smoother edges and nifty edge
effects.

low = 0.02; high = 0.035;

double dist =
bilinearSample(tex coords);

double t =
(dist - low) / (high - low);

return (dist < low) ? BLACK

 : (dist > high) ? WHITE

 : BLACK*(1 - t) + WHITE*(t);

Adding a
second
isocline
enables
colored
borders.157

Tessellation shaders

One use of tessellation is in rendering
geometry such as game models or terrain
with view-dependent Levels of Detail
(“LOD”).
Another is to do with geometry what

ray-tracing did with bump-mapping:
high-precision realtime geometric
deformation.

Tesselation is a new shader type
introduced in OpenGL 4.x. Tesselation
shaders generate new vertices within
patches, transforming a small number of
vertices describing triangles or quads
into a large number of vertices which
can be positioned individually.

jabtunes.com’s WebGL tessellation demo
Florian Boesch’s LOD terrain demo

http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

N
ot

e
ho

w
 tr

ia
ng

le
s a

re
 sm

al
l a

nd

de
ta

ile
d

cl
os

e
to

 th
e

ca
m

er
a,

 b
ut

be

co
m

e
ve

ry
 la

rg
e

an
d

co
ar

se
 in

th

e
di

st
an

ce
.

158

http://jabtunes.com/labs/3d/webgl_geometry_tessellation_exploding.html#Tessellation
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

Tessellation shaders

How it works:
● You tell OpenGL how many vertices a single

patch will have:
glPatchParameteri(GL_PATCH_VERTICES, 4);

● You tell OpenGL to render your patches:
glDrawArrays(GL_PATCHES, first, numVerts);

● The Tessellation Control Shader specifies output
parameters defining how a patch is split up:
gl_TessLevelOuter[] and
gl_TessLevelInner[].
These control the number of vertices per primitive
edge and the number of nested inner levels,
respectively.

Vertex shader

Tessellation Control Shader

Tessellation primitive generator

Tessellation Evaluation Shader

Geometry shader

Fragment shader

...

159

Tessellation shaders

The tessellation primitive generator
generates new vertices along the
outer edge and inside the patch, as
specified by
gl_TessLevelOuter[] and
gl_TessLevelInner[].

Each field is an array. Within the
array, each value sets the number of
intervals to generate during
subprimitive generation.

Triangles are indexed similarly, but
only use the first three Outer and
the first Inner array field.

gl_TessLevelOuter[3] = 5.0

gl_TessLevelOuter[1] = 3.0

gl_TessLevelInner[1] = 4.0

g
l
_
T
e
s
s
L
e
v
e
l
I
n
n
e
r
[
0
]

=

3
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
0
]

=

2
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
2
]

=

2
.
0

160

Tessellation shaders
The generated vertices are then
passed to the Tesselation
Evaluation Shader, which can
update vertex position, color,
normal, and all other per-vertex
data.

Ultimately the complete set of
new vertices is passed to the
geometry and fragment
shaders.

Image credit: Philip Rideout
http://prideout.net/blog/?p=48161

http://prideout.net/blog/?p=48

CPU vs GPU – an object demonstration

“NVIDIA: Mythbusters - CPU vs GPU”
https://www.youtube.com/watch?v=-P28LKWTzrI

R
ed

ux
: h

ttp
://

w
w

w
.y

ou
tu

be
.c

om
/w

at
ch

?v
=f

K
K

93
3K

K
6G

g

162

https://www.youtube.com/watch?v=-P28LKWTzrI
http://www.youtube.com/watch?v=fKK933KK6Gg
http://www.youtube.com/watch?v=-P28LKWTzrI

Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner

Anti-Aliasing:
https://people.csail.mit.edu/ericchan/articles/prefilter/
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf

163

https://github.com/AlexBenton/AdvancedGraphics
https://people.csail.mit.edu/ericchan/articles/prefilter/
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf

Global Illumination
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Further Graphics

164

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently
in one direction from another, as a function of the surface itself. The specular
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/ 165

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

Reflected light Incident lightBRDF
Integral over the
hemisphere of
incident light

Most rendering methods
require solving an
(approximation) of the
rendering equation

The rendering equation

166

Differential radiance of reflected light

Differential irradiance of incoming light
Source: Wikipedia

BRDF is measured as a ratio of reflected radiance to irradiance
● Because it is difficult to measure Li(wi), it’s impractical to

define BRDF simply as the ratio of Lr(wr) to Li(wi)

BRDF: Bidirectional Reflectance
Distribution Function

167

These diagrams show the
distribution of reflected
light for the given
incoming direction
The material samples are
close but not accurate
matches for the diagrams

Magnesium alloy;
λ=0.5μm

Aluminium;
λ=0.5μm

Aluminium;
λ=2.0μm

Incident light

Reflected lightBRDF of various
materials

168

● Gonio-Reflectometer
● BRDF measurement

● point light source position (θ,ϕ)
● light detector position (θo ,ϕo)

● 4 directional degrees of freedom
● BRDF representation

● m incident direction samples
(θ,ϕ)

● n outgoing direction samples
(θo ,ϕo)

● m*n reflectance values
(large!!!)

Stanford light gantry

Measuring BRDF

169

Improving on the classic lighting
implementations
● Soft shadows are expensive
● Shadows of transparent objects require

further coding or hacks
● Lighting off reflective objects follows

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color

bleeding, such as in the Cornell
Box—notice how the sides of the inner
cubes are shaded red and green.)

● Fundamentally, the ambient term is a hack
and the diffuse term is only one step in
what should be a recursive, self-reinforcing
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University
in 1984 by Don Greenberg. An actual box
is built and photographed; an identical
scene is then rendered in software and the
two images are compared.

170

Ambient occlusion

● Ambient illumination is a blanket constant that we often add to every
illuminated element in a scene, to (inaccurately) model the way that
light scatters off all surfaces, illuminating areas not in direct lighting.

● Ambient occlusion is the technique of
adding/removing ambient light when
other objects are nearby and scattered
light wouldn’t reach the surface.

● Computing ambient occlusion is a
form of global illumination, in which
we compute the lighting of scene
elements in the context of the scene
as a whole.

Image from “ZBrush® Character Creation: Advanced
Digital Sculpting, Second Edition”, by Scott Spencer, 2011171

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)172

http://filmicgames.com/archives/6

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)173

http://filmicgames.com/archives/6

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)174

http://filmicgames.com/archives/6

Ambient occlusion in action

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)175

http://filmicgames.com/archives/6

Ambient occlusion - Theory

We can treat the background (the sky)
as a vast ambient illumination source.
● For each vertex of a surface, compute

how much background illumination
reaches the vertex by computing how
much sky it can ‘see’

● Integrate occlusion Ap over the
hemisphere around the normal at the
vertex:

● Ap occlusion at point p
● n normal at point p
● Vp,ᶫ visibility from p in direction ᶫ
● Ω integrate over area (hemisphere)

Bottom image credit: “GPU Gems 2”, nVidia, 2005. Vertices mapped
to illumination disks for hemispheric illumination mapping. 176

Ambient occlusion - Theory

● This approach is very flexible
● Also very expensive!
● To speed up computation, randomly

sample rays cast out from each
polygon or vertex (this is a
Monte-Carlo method)

● Alternatively, render the scene from
the point of view of each vertex and
count the background pixels in the
render

● Best used to pre-compute per-object
“occlusion maps”, texture maps of
shadow to overlay onto each object

● But pre-computed maps fare poorly
on animated models...

Image credit: “GPU Gems 1”, nVidia, 2004.
Top: without AO. Bottom: with AO. 177

Z-
bu

ff
er

 -
to

w
ar

ds
 th

e
ey

e

Screen Space Ambient Occlusion
(“SSAO”)

“True ambient occlusion is hard,
let’s go hacking.”

● Approximate ambient occlusion
by comparing z-buffer values in
screen space!

● Open plane = unoccluded
● Closed ‘valley’ in depth buffer =

shadowed by nearby geometry
● Multi-pass algorithm
● Runs entirely on the GPU

Image: CryEngine 2. M. Mittring, “Finding Next Gen –
CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28 178

Screen Space Ambient Occlusion
1. For each visible point on a surface in the scene

(ie., each pixel), take multiple samples (typically
between 8 and 32) from nearby and map these
samples back to screen space

2. Check if the depth sampled at each neighbor is
nearer to, or further from, the scene sample point

3. If the neighbor is nearer than the scene sample
point then there is some degree of occlusion

a. Care must be taken not to occlude if the nearer
neighbor is too much nearer than the scene
sample point; this implies a separate object, much
closer to the camera

4. Sum retained occlusions, weighting with an
occlusion function

Image: StarCraft II. Advances in Real-Time Rendering in 3D
Graphics and Games - Course notes, SIGGRAPH 2008 179

0) Base Image1) Base SSAO2) Dilate Horizontal3) Dilate Vertical4) Low Pass Filter (significant blurring)

SSAO example- Uncharted 2

John Hable, GDC 2010, “Uncharted 2: HDR Lighting”
(filmicgames.com/archives/6) 180

http://filmicgames.com/archives/6

Ambient occlusion and Signed Distance
Fields

In a nutshell, SSAO tries to estimate
occlusion by asking, “how far is it to
the nearest neighboring geometry?”

With signed distance fields, this question
is almost trivial to answer.

float ambient(vec3 pt, vec3 normal) {
 float a = 1;
 int step = 0;

 for (float t = 0.01; t <= 0.1;) {
 float d = abs(getSdf(pt + t * normal));
 a = min(a, d / t);
 t += max(d, 0.01);
 }
 return a;
}

float ambient(vec3 pt, vec3 normal) {
 return abs(getSdf(pt + 0.1 * normal)) / 0.1;
}

181

Images from Cornell University’s graphics group
http://www.graphics.cornell.edu/online/research/

Radiosity
● Radiosity is an illumination method which

simulates the global dispersion and
reflection of diffuse light.
● First developed for describing spectral

heat transfer (1950s)
● Adapted to graphics in the 1980s at

Cornell University
● Radiosity is a finite-element approach to

global illumination: it breaks the scene into
many small elements (‘patches’) and
calculates the energy transfer between
them.

182

http://www.graphics.cornell.edu/online/research/

Radiosity—algorithm
● Surfaces in the scene are divided into patches, small subsections of

each polygon or object.
● For every pair of patches A, B, compute a view factor (also called a

form factor) describing how much energy from patch A reaches
patch B.
● The further apart two patches are in space or orientation, the less light

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying

more light to patches with higher relative view factors. Repeating
this step will distribute the total
light across the scene, producing
a global diffuse illumination model.

183

Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch
combined with the total light being reflected by the patch:

This forms a system of linear equations, where…
Bi is the radiosity of patch i;
Bj is the radiosity of each of the other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.

184

Radiosity—form factors
● Finding form factors can be done

procedurally or dynamically
● Can subdivide every surface into small

patches of similar size
● Can dynamically subdivide wherever the 1st

derivative of calculated intensity rises above
some threshold.

● Computing cost for a general radiosity
solution goes up as the square of the number
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be

a waste.
● Patches should ideally closely align with

lines of shadow.

185

Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor

and walls of the room are dynamically
subdivided to produce more patches
where shadow detail is higher.

Images from “Automatic
generation of node spacing
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/
nspE.htm

(A) (B)

186

http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm

Radiosity—view factors
One equation for the view factor between
patches i, j is:

…where θi is the angle between the normal of
patch i and the line to patch j, r is the distance
and V(i,j) is the visibility from i to j (0 for
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj

187

Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a

half-cube. The scene is then ‘rendered’ from the point of view of the
patch, through the walls of the hemicube; V(i,j) is computed for each
patch based on which patches it can see (and at what percentage) in its
hemicube.

● A purer method, but more computationally expensive, uses
hemispheres.

Note: This method can be accelerated
using modern graphics hardware to
render the scene. The scene is
‘rendered’ with flat lighting, setting the
‘color’ of each object to be a pointer to
the object in memory.

188

Radiosity gallery

Teapot (wikipedia)

Image from
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation:
a Synthesis of Ray Tracing and Radiosity Methods,
John R. Wallace, Michael F. Cohen and Donald P. Greenberg
(Cornell University, 1987)

189

References
Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)

Anisotropic surface:

● A. Watt, 3D Computer Graphics - Chapter 7: Simulating light-object interaction: local reflection models
● Eurographics 2016 tutorial - D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M. Glencross - BRDF

Representation and Acquisition
Ambient occlusion and SSAO:

● “GPU Gems 2”, nVidia, 2005. Vertices mapped to illumination.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html

● Mittring, M. 2007. Finding Next Gen – CryEngine 2.0, Chapter 8, SIGGRAPH 2007 Course 28 – Advanced
Real-Time Rendering in 3D Graphics and Games
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf

● John Hable’s presentation at GDC 2010, “Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)
Radiosity:

● http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
● http://www.graphics.cornell.edu/online/research/
● Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, “A Ray Tracing Algorithm for Progressive

Radiosity.” In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315–324.
● Buss, “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter XI), Cambridge

University Press (2003)
190

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf
http://filmicgames.com/archives/6
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
http://www.graphics.cornell.edu/online/research/

Appendices
Additional topics of interest in computer graphics.

These slides are not examinable.

A. Constructive Solid Geometry
B. Perlin Noise
C. NURBS
D. Implicit Surface Modeling
E. Photon Mapping

191

Appendix A:
Constructive Solid Geometry

Constructive Solid Geometry
(CSG) is a ray-tracing technique
which builds complicated forms
out of simple primitives,
comparable to (and more
complicated than, but also more
precise than) Signed Distance
Fields.

These primitives are combined
with the standard boolean
operations: union, intersection,
difference. CSG figure by Neil Dodgson

192

Constructive Solid Geometry

Three operations:
1. Union 2. Intersection 3. Difference

193

Constructive Solid Geometry

CSG surfaces are described by a binary tree,
where each leaf node is a primitive and each
non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4

194

For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points

where r enters of leaves A or B.
● You can think of each intersection as

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

A B

Ray-tracing CSG models

195

Ray-tracing CSG models

Each boolean operation can
be modeled as a state
machine.
For each operation, retain
those intersections that
transition into or out of
the critical state(s).
● Union:

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and
B

In A In B

Not in A
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A

196

Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B Was In A Is In A Was In B Is In B

 t1 No Yes No No

 t2 Yes Yes No Yes

 t3 Yes No Yes Yes

 t4 No No Yes No

difference =
((wasInA != isInA) &&
 (!isInB)&&(!wasInB))
||
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models

197

Constructive Solid Geometry - References

● Jules Bloomenthal, Introduction to Implicit
Surfaces (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● MIT lecture notes:
http://groups.csail.mit.edu/graphics/classes/
6.837/F98/talecture/

198

Appendix B:
Perlin Noise

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 199

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1
where noise(P) is a function that maps 3D coordinates in

space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

200

Perlin noise
Perlin noise (invented by Ken Perlin) is a method for

generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically
• Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 201

http://www.noisemachine.com/talk1/

Perlin noise 1
Perlin noise caches ‘seed’ random values on a grid at

integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html202

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 2
For each of the four corners, take the dot product of the

random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values
of the dot products will change smoothly, with no
discontinuity.

● As (x, y) approaches a grid point, the contribution from
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

203

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 3
Now we take a weighted average of LL, LR, UL, UR.

Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =

 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))
Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

204

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin Noise - References

● https://web.archive.org/web/20160303232627/http://www.noisemach
ine.com/talk1/

● http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perli
n-noise-math-faq.html

205

https://web.archive.org/web/20160303232627/http://www.noisemachine.com/talk1/
https://web.archive.org/web/20160303232627/http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Appendix C:
NURBS

● NURBS (“Non-Uniform Rational
B-Splines”) are a generalization of Beziers.
● NU: Non-Uniform. The knots in the knot vector

are not required to be uniformly spaced.
● R: Rational. The spline may be defined by

rational polynomials (homogeneous coordinates.)
● BS: B-Spline. A generalized Bezier spline with

controllable degree.

B-Splines
We’ll build our definition of a B-spline from:
● d, the degree of the curve
● k = d+1, called the parameter of the curve
● {P1…Pn}, a list of n control points
● [t1,…,tk+n], a knot vector of (k+n) parameter values (“knots”)
● d = k-1 is the degree of the curve, so k is the number of control

points which influence a single interval.
● Ex: a cubic (d=3) has four control points (k=4).

● There are k+n knots ti, and ti ≤ ti+1 for all ti.
● Each B-spline is C(k-2) continuous: continuity is degree minus one,

so a k=3 curve has d=2 and is C1.

B-Splines

● The equation for a B-spline curve is

● Ni,k(t) is the basis function of control point Pi for
parameter k. Ni,k(t) is defined recursively:

B-Splines

N1,1(t) N2,1(t) N3,1(t) N4,1(t) …

N1,2(t) N2,2(t) N3,2(t)

N1,3(t) N2,3(t)

N1,4(t)

…

…

…

t1 t2 t3 t4 t5 …

B-Splines

N5,1(t)=1, 4 ≤ t < 5

N3,1(t)=1, 2 ≤ t < 3

N1,1(t)=1, 0 ≤ t < 1

N4,1(t)=1, 3 ≤ t < 4

N2,1(t)=1, 1 ≤ t < 2

Knot vector = {0,1,2,3,4,5}, k = 1 → d = 0 (degree = zero)

N1,1(t) N2,1(t) N3,1(t) N4,1(t)
0 1 1 2 2 3 3 4

N5,1(t)
54

t1 = 0.0
t2 = 1.0
t3 = 2.0
t4 = 3.0
t5 = 4.0
t6 = 5.0

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Knot vector = {0,1,2,3,4,5}, k = 2 → d = 1 (degree = one)

B-Splines

N1,3(t) N2,3(t) N3,3(t)

Knot vector = {0,1,2,3,4,5}, k = 3 → d = 2 (degree = two)

B-Splines

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Basis functions really sum to one (k=2)

=
The sum of
the four basis
functions is
fully defined
(sums to one)
between
t2 (t=1.0) and
t5 (t=4.0).

N1,3(t) N2,3(t) N3,3(t)

Basis functions really sum to one (k=3)

+ +

=

The sum of
the three
functions is
fully defined
(sums to one)
between
t3 (t=2.0) and
t4 (t=3.0).

B-Splines

At k=2 the function is piecewise
linear, depends on P1,P2,P3,P4, and is
fully defined on [t2, t5).

Each parameter-k basis function depends on k+1 knot values; Ni,k depends on ti
through ti+k, inclusive. So six knots → five discontinuous functions → four piecewise
linear interpolations → three quadratics, interpolating three control points. n=3
control points, d=2 degree, k=3 parameter, n+k=6 knots.

At k=3 the function is piecewise
quadratic, depends on P1,P2,P3, and is
fully defined on [t3, t4).

Knot vector = {0,1,2,3,4,5}

Non-Uniform B-Splines
● The knot vector {0,1,2,3,4,5} is uniform:

ti+1-ti = ti+2-ti+1 ∀ti.
● Varying the size of an interval changes the

parametric-space distribution of the weights assigned to
the control functions.

● Repeating a knot value reduces the continuity of the
curve in the affected span by one degree.

● Repeating a knot k times will lead to a control function
being influenced only by that knot value; the spline will
pass through the corresponding control point with C0
continuity.

Open vs Closed

● A knot vector which repeats its first and last knot
values k times is called open, otherwise closed.
● Repeating the knots k times is the only way to

force the curve to pass through the first or last
control point.

● Without this, the functions N1,k and Nn,k which
weight P1 and Pn would still be ‘ramping up’
and not yet equal to one at the first and last ti.

Open vs Closed

● Two examples you may recognize:
● k=3, n=3 control points, knots={0,0,0,1,1,1}
● k=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

Non-Uniform Rational B-Splines

● Repeating knot values is a clumsy way to
control the curve’s proximity to the control
point.
● The solution: homogeneous coordinates.
● Associate a ‘weight’ with each control point, ωi,

so that the expression becomes a weighted
average

● This allows us to slide the curve nearer or farther
to individual control points without losing
continuity or introducing new control points.

Non-Uniform Rational B-Splines in action

Demo

http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

NURBS - References

● Les Piegl and Wayne Tiller, The NURBS
Book, Springer (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● G. Farin, J. Hoschek, M.-S. Kim, Handbook
of Computer Aided Geometric Design,
North-Holland (2002)

221

Appendix D:
Implicit surface modeling
Implicit surface modeling(1) is a
way to produce very ‘organic’ or
‘bulbous’ surfaces very quickly
without subdivision or NURBS.
Uses of implicit surface
modelling:
● Organic forms and nonlinear

shapes
● Scientific modeling (electron

orbitals, gravity shells in space,
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force
functions”, “blobby modeling”… 222

How it works
The user controls a set of control
points; each point in space
generates a field of force, which
drops off as a function of distance
from the point. This 3D field of
forces defines an implicit surface:
the set of all the points in space
where the force field sums to a key
value.

Force = 2

1

0.5

0.25 ...
223

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
 a(1- 3r2 / b2) 0 ≤ r < b/3

F(r) = (3a/2)(1-r/b)2 b/3 ≤ r < b
 0 b ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Discovering the surface

An octree is a recursive subdivision of
space which “homes in” on the surface,
from larger to finer detail.
● An octree encloses a cubical volume in space.

You evaluate the force function F(v) at each
vertex v of the cube.

● As the octree subdivides and splits into smaller
octrees, only the octrees which contain some of
the surface are processed; empty octrees are
discarded.

224

Polygonizing the surface
To display a set of octrees, convert the octrees into polygons.

● If some corners are “hot” (above the force limit) and others are
“cold” (below the force limit) then the implicit surface crosses the
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more
rings, which can be triangulated. The normal is known from the
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any
child whose vertices are all hot or all cold.

225

Polygonizing the surface

Recursive subdivision (on a quadtree):

226

Polygonizing the surface
There are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in
the polygonization which must be
addressed separately. ↓

Images courtesy of Diane Lingrand

227

http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose

vertices are the midpoints of the edges which lie
between hot and cold vertices.

● The vertices of the implicit surface can be more
closely approximated by points linearly interpolated
along the edges of the cube by the weights of the
relative values of the force function.
• t = (0.5 - F(P1)) / (F(P2) - F(P1))
• P = P1 + t (P2 - P1)

228

Blobby Modeling - References
D. Ricci, A Constructive Geometry for Computer Graphics, Computer
Journal, May 1973
J Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided
Geometric Design, Issue 5, 1988
B Wyvill, C McPheeters, G Wyvill, Soft Objects, Advanced Computer
Graphics (Proc. CG Tokyo 1986)
B Wyvill, C McPheeters, G Wyvill, Animating Soft Objects, The Visual
Computer, Issue 4 1986
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf

229

http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf

Appendix E:
Photon Mapping
● Problem: shadow ray strikes

transparent, refractive object.
● Refracted shadow ray will

now miss the light.
● This destroys the validity of

the boolean shadow test.
● Problem: light passing through

a refractive object will
sometimes form caustics (right),
artifacts where the envelope of
a collection of rays falling on
the surface is bright enough to
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and
outside of its shadow.
Photo credit: Jan Zankowski

230

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping

Shadows, refraction and caustics
● Solutions for shadows of transparent objects:

● Backwards ray tracing (Arvo)
● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

231

http://graphics.ucsd.edu/~henrik/

Photon mapping
Photon mapping is the process of
emitting photons into a scene and
tracing their paths probabilistically
to build a photon map, a data
structure which describes the
illumination of the scene
independently of its geometry.

This data is then combined with
ray tracing to compute the global
illumination of the scene.

Image by Henrik Jensen (2000)

232

Photon mapping—algorithm (1/2)
Photon mapping is a two-pass algorithm:
1. Photon scattering

A. Photons are fired from each light source, scattered in
randomly-chosen directions. The number of photons per light is
a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer, folks.)
Where they strike a surface they are either absorbed, reflected or
refracted.

C. Wherever energy is absorbed, cache the location, direction and
energy of the photon in the photon map. The photon map data
structure must support fast insertion and fast nearest-neighbor
lookup; a kd-tree is often used.

Image by Zack Waters

233

Photon mapping—algorithm (2/2)
Photon mapping is a two-pass algorithm:
2. Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for specular but

compute diffuse from the photon map and do away with ambient
completely.

C. Compute radiant illumination by summing the contribution
along the eye ray of all photons within a sphere of radius r of P.

D. Caustics can be calculated directly here from the photon map.
For speed, the caustic map is usually distinct from the radiance
map.

Image by Zack Waters

234

Photon mapping is probabilistic
This method is a great example of
Monte Carlo integration, in which a
difficult integral (the lighting
equation) is simulated by randomly
sampling values from within the
integral’s domain until enough
samples average out to about the
right answer.
● This means that you’re going to be

firing millions of photons. Your
data structure is going to have to be
very space-efficient.

Image credit: http://www.okino.com/conv/imp_jt.htm 235

http://www.okino.com/conv/imp_jt.htm

Photon mapping is probabilistic
● Initial photon direction is random. Constrained by light

shape, but random.
● What exactly happens each time a photon hits a solid also

has a random component:
● Based on the diffuse reflectance, specular reflectance and

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1. This gives a probability map:

● Choose a random value p є [0,1]. Where p falls in the
probability map of the surface determines whether the photon is
reflected, refracted or absorbed.

0 1pd ps pt
This surface would
have minimal
specular highlight.

236

Photon mapping gallery

http://www.pbrt.org/gallery.phphttp://web.cs.wpi.edu/~emmanuel/courses/cs563/writ
e_ups/zackw/photon_mapping/PhotonMapping.html

http://graphics.ucsd.edu/~henrik/images/global.html

237

http://www.pbrt.org/gallery.php
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://graphics.ucsd.edu/~henrik/images/global.html

Photon Mapping - References

● Henrik Jensen, “Global Illumination using Photon
Maps”: http://graphics.ucsd.edu/~henrik/

● Henrik Jensen, “Realistic Image Synthesis Using Photon
Mapping”

● Zack Waters, “Photon Mapping”:
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_u
ps/zackw/photon_mapping/PhotonMapping.html

238

http://graphics.ucsd.edu/~henrik/
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

