
Advanced Graphics

A
le

x
B

en
to

n,
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 –
 a

le
x@

be
nt

on
ia

n.
co

m

Su
pp

or
te

d
in

 p
ar

t b
y

G
oo

gl
e

U
K

, L
td

“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one

trillion rays w
ere traced in the generation of this im

age.

Ray Tracing
All the maths

1

Ray tracing

● A powerful alternative to polygon scan-conversion techniques
● An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the
center of every pixel and see what it hits.

2

The algorithm
Select an eye point and a screen plane.
for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.
for (each object in the scene):

if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.

3

Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s

sc
ul

pt
ur

e"
 b

y
Tr

ev
or

 G
. Q

ua
yl

e
(2

00
8)

"POV Planet" by Casey Uhrig (2004)

4

http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/

The basic algorithm is
straightforward, but there's
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit

on the back of his business card. (circa 1983)

It doesn’t take much code

5

The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x
(num objects in scene) x
(num reflective surfaces) x
(num transparent surfaces) x
(num shadow rays) x
(ray reflection depth) x …

Contrast this to polygon rasterization: time is a function of the
number of elements in the scene times the number of lights.

Image by nVidia

Running time

6

Once you have the point P (the intersection of the ray with
the nearest object) you’ll compute how much each of the
lights in the scene illuminates P.
diffuse = 0
specular = 0
for (each light Li in the scene):

if (N•L) > 0:
[Optionally: if (a ray from P to Li can reach Li):]

diffuse += kD(N•L)
specular += kS(R•E)n

intensity at P = ambient + diffuse + specular

E

L1

P

L2

L3

N

Ray-traced illumination

7

A ray is defined parametrically as
P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the
ray’s direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z:
x(t) = xE + txD
y(t) = yE + tyD t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays

8

Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation
x2 + y2 + z2 = 1 (γ)

Substituting equation (β) into (γ) gives
(xE+txD)2 + (yE+tyD)2 + (zE+tzD)2 = 1

which expands to
t2(xD

2+yD
2+zD

2) + t(2xExD+2yEyD+2zEzD) + (xE
2+yE

2+zE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t:

...giving us two points of intersection.

9

A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0 (ζ)

Substituting equation (α) into (ζ) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv1) + yN(yE+tyD-yv1) + zN(zE+tzD-zv1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons

10

Half-planes method
● Each edge defines an infinite half-plane

covering the polygon. If the point P lies
in all of the half-planes then it must be in
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…
v…

vn

vi

vi+1

P

eeR

Point in convex polygon

11

Barycentric coordinates (tA,tB,tC) are a
coordinate system for describing the location of
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’

placed at (A,B,C) respectively so that the
center of gravity of the triangle lies at P.

● (tA,tB,tC) are also proportional to the
subtriangle areas.
○ The area of a triangle is ½ the length of the cross

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates

12

Barycentric coordinates

13

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
vec3 barycentric(vec3 p, vec3 a, vec3 b, vec3 c) {
 vec3 v0 = b - a, v1 = c - a, v2 = p - a;
 float d00 = dot(v0, v0);
 float d01 = dot(v0, v1);
 float d11 = dot(v1, v1);
 float d20 = dot(v2, v0);
 float d21 = dot(v2, v1);
 float denom = d00 * d11 - d01 * d01;
 float v = (d11 * d20 - d01 * d21) / denom;
 float w = (d00 * d21 - d01 * d20) / denom;
 float u = 1.0 - v - w;
 return vec3(u, v, w);
}

Code credit: Christer Ericson, Real-Time Collision Detection (2004)
(adapted to GLSL for this lecture)

Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling
transforms and just project along any axis by ignoring (for
example) the Z component.

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon

14

“Any simple closed curve C divides the points of the
plane not on C into two distinct domains (with no
points in common) of which C is the common
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838

-1922) in his Cours d'Analyse.
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B
must cross C.

A
B

C

The Jordan curve theorem

15

Note that the Jordan curve theorem can be extended to
a curve on a sphere, or anything which is topologically
equivalent to a sphere.
“Any simple closed curve on a sphere separates the

surface of the sphere into two distinct regions.”

A

B

The Jordan curve theorem on a sphere

16

Local coordinates, world coordinates

The cylinder “as it sees
itself”, in local coordinates

The cylinder “as the world sees it”, in world coordinates

5 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

* =

A 4x4 scale matrix, which
multiplies x and z by 5, y by 2.

A very common technique in graphics is to associate a
local-to-world transform, T, with a primitive.

17

Local coordinates, world coordinates:
Transforming the ray

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

E

T-1E

In order to test whether a ray hits a transformed object,
we need to describe the ray in the object’s local
coordinates. We transform the ray by the inverse of
the local to world matrix, T-1.

If the ray is defined by
P(t) = E + tD

then the ray in local coordinates is defined by
T-1(P(t)) = T-1(E) + t(T-13x3D)

where T-13x3 is the top left 3x3 submatrix of T-1.

18

Finding the normal

We often need to know N, the normal to the surface at the
point where a ray hits a primitive.

● If the ray R hits the primitive P at point X then N is…

We use the normal for color, reflection, refraction, shadow rays...

Primitive type Equation for N

Unit Sphere centered at the origin N = X

Infinite Unit Cylinder centered at the origin N = [xX, yX, 0]

Infinite Double Cone centered at the origin N = X × (X × [0, 0, zX])

Plane with normal n N = n

19

local

world

T

NL

NW

Converting the normal from local to world
coordinates

To find the world-coordinates normal N from the
local-coordinates NL, multiply NL by the transpose
of the inverse of the top left-hand 3x3 submatrix of
T:

N=((T3x3)
-1)T NL

● We want the top left 3x3 to discard translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c)

becomes (1/a,1/b,1/c) when inverted

20

Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object
transformed by local-to-world transform T:
1. Compute R’, the ray R in local coordinates, as

P’(t) = T-1(P(t)) = T-1(E) + t(T-13x3(D))

2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to

world coordinates by multiplying them by T.
4. Convert all hit normals from local coordinates back to

world coordinates by multiplying them by ((T3x3)-1)T.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed
primitive objects.

21

Your scene graph and you
Many 2D GUIs today favor an event model in which events ‘bubble up’

from child windows to parents. This is sometimes mirrored in a scene
graph.

● Ex: a child changes size, changing the size of the parent’s bounding box
● Ex: the user drags a movable control in the scene, triggering an update event

If you do choose this approach, consider using the Model View Controller
or Model View Presenter design pattern. 3D geometry objects are
good for displaying data but they are not the proper place for control
logic.

● For example, the class that stores the geometry of the rocket should not be the
same class that stores the logic that moves the rocket.

● Always separate logic from representation.

22

Great for…
● Collision detection between

scene elements
● Culling before rendering
● Accelerating ray-tracing

Your scene graph and you
A common optimization derived

from the scene graph is the
propagation of bounding
volumes.

Nested bounding volumes allow
the rapid culling of large
portions of geometry

● Test against the bounding
volume of the top of the scene
graph and then work down.

23

Speed up ray-tracing with bounding
volumes
Bounding volumes help to quickly accelerate volumetric tests,
such as “does the ray hit the cow?”
● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight
Axis-aligned bounding boxes
● max and min of x/y/z.
Bounding spheres
● max of radius from some rough center
Bounding cylinders
● common in early FPS games

24

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.
● Pro: Rays can skip

subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

25

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that
cell.
● Pro: The ray can skip empty

cells

● Con: Depending on cell size,
objects may overlap many
filled cells or you may waste
memory on many empty
cells

26

The BSP tree partitions the scene into
objects in front of, on, and behind a
tree of planes.
● When you fire a ray into the scene, you test

all near-side objects before testing far-side
objects.

Problems:
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on

floating-point math.

A

B

C

E

F
D

Popular acceleration structures:
BSP Trees

27

Popular acceleration structures:
kd-trees

The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by

axis-aligned planes and points on either side
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

28

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.
● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

29

References
Jordan curves
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html

Intersection testing
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing
Foley & van Dam, Computer Graphics (1995)
Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object Space,
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html (1993)
Zack Waters, “Realistic Raytracing”,
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

30

http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

Ray Tracing:
Image Quality and Texture

Alex Benton, University of Cambridge –

alex@bentonian.com

Supported in part by Google UK, Ltd 31

Shadows

To simulate shadows in ray tracing, fire a ray
from P towards each light Li. If the ray hits
another object before the light, then discard Li
in the sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.

32

D

O

P

L
1

Softer shadows

Shadows in nature are not sharp because light sources are not
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration:

a coarse simulation of an integral over a space
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.

33

R
ay

s p
er

 sh
ad

ow
 te

st
: 2

0

Light radius: 1

All images anti-aliased with 4x supersampling.
Distance to light in all images: 20 units

R
ay

s p
er

 sh
ad

ow
 te

st
: 1

00

Light radius: 5

Softer shadows

34

E

P

θ

L

S

Raytraced spotlights

D

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by
(max(L•S,0))m.
● Raising m will tighten the spotlight,

but leave the edges soft.
● If you’d prefer a hard-edged spotlight

of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

35

E

P

L
1

Q

Reflection

Reflection rays are calculated as:
R = 2(-D•N)N+D

● Finding the reflected color is a
recursive raycast.

● Reflection has scene-dependant
performance impact.

● If you’re using the GPU, GLSL supports
reflect() as a built-in function.

D

36

num bounces=1

num bounces=0 num bounces=2

num bounces=3 37

E D
DT

Transparency

To add transparency, generate and trace a new
transparency ray with ET=P, DT=D.

To support this in software, make color a 1x4 vector
where the fourth component, ‘alpha’,
determines the weight of the recursed
transparency ray.

38

1 Or sound waves or other waves

Refraction

The angle of incidence of a ray of light where it
strikes a surface is the acute angle between the
ray and the surface normal.
The refractive index of a material is a measure
of how much the speed of light1 is reduced
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

39

Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of
light at the interface between two materials is equal to the
inverse ratio of the refractive indices of the materials is equal
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and René Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction

40

Refraction in ray tracing

Using Snell’s Law and the angle of
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

E
D

P

P’

N
θ1

θ2

41

Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in

[-1,1].
● We call this the angle of total

internal reflection: light is trapped
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal
reflection

42

Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency,
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that
curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

43

Aliasing

-

=

44

Anti-aliasing

Fundamentally, the problem with aliasing is that we’re sampling an infinitely
continuous function (the color of the scene) with a finite, discrete function (the
pixels of the image).

One solution to this is super-sampling. If we fire multiple rays through each
pixel, we can average the colors
computed for every ray together
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

45Lecture note: Four printed slides removed here,
reviewing antialiasing from last year’s notes.

http://www.svi.nl/

Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit:
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 46

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Texture mapping

As observed in last year’s course, real-life objects rarely
consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a
surface, like a decal. Coordinates on the surface are
mapped to coordinates in the texture.

47

Texture mapping

0, 0

0, 1 1, 1

1, 0

We’ll need to query the color of the
texture at the point in 3D space where
the ray hits our surface. This is
typically done by mapping

 (3D point in local coordinates)
 → U,V coordinates bounded [0-1, 0-1]
 → Texture coordinates bounded by

[image width, image height]

48

UV mapping the primitives

UV mapping of a unit cube
if |x| == 1:
 u = (z + 1) / 2
 v = (y + 1) / 2
elif |y| == 1:
 u = (x + 1) / 2
 v = (z + 1) / 2
else:
 u = (x + 1) / 2
 v = (y + 1) / 2

UV mapping of a torus of
major radius R

 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 + atan2(y, ((x2 + z2)½ - R) / 2π

UV mapping of a unit sphere
 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 - asin(y) / π

UV mapping is easy for primitives but can be very difficult for arbitrary shapes.

49

Texture mapping

One constraint on using images for texture is that images
have a finite resolution, and a virtual (ray-traced) camera
can get quite near to the surface of an object.

This can lead to a
single image pixel
covering multiple
ray-traced pixels (or
vice-versa), leading to
blurry or aliased pixels
in your texture.

50

Procedural texture

Instead of relying on discrete
pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

 tx = (int) 10 * u

 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u
coordinate by 4 to repeat the brick texture
four times around the torus.

51

Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the ray tracer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

52

Non-color textures: normal mapping

53

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently
in one direction from another, as a function of the surface itself. The specular
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/ 54

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

Procedural volumetric texture

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 55

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in
space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

56

Perlin noise

Perlin noise (invented by Ken Perlin) is a method for
generating noise which has some useful traits:

● It is a band-limited repeatable pseudorandom
function (in the words of its author, Ken Perlin)

● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically
● Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 57

http://www.noisemachine.com/talk1/

Perlin noise 1

Perlin noise caches ‘seed’ random values on a grid at
integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html58

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 2

For each of the four corners, take the dot product of the
random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values
of the dot products will change smoothly, with no
discontinuity.

● As (x, y) approaches a grid point, the contribution from
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

59

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 3

Now we take a weighted average of LL, LR, UL, UR.
Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =
 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))

Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

60

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Tuning noise

Texture frequency
1 → 3

Noise frequency
1 → 3

Noise amplitude
1 → 3 61

http://www.youtube.com/watch?v=H4Xll-x2vL0

References
Ray tracing
Peter Shirley, Steve Marschner. Fundamentals of Computer Graphics. Taylor & Francis,
21 Jul 2009
Hughes, Van Dam et al. Computer Graphics: Principles and Practice. Addison Wesley,
3rd edition (10 July 2013)

Anisotropic shading
Greg Ward, “Measuring and Modeling Anisotropic Reflection”, Computer Graphics
(SIGGRAPH ’92 Proceedings), pp. 265–272, July 1992
(http://radsite.lbl.gov/radiance/papers/sg92/paper.html)
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal

Perlin noise
http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

62

http://radsite.lbl.gov/radiance/papers/sg92/paper.html
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal
http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Advanced Graphics

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

OpenGL
and

Shaders I

63

3D technologies today
Java
● Common, re-usable language;

well-designed
● Steadily increasing popularity in

industry
● Weak but evolving 3D support

C++
● Long-established language
● Long history with OpenGL
● Long history with DirectX
● Losing popularity in some fields

(finance, web) but still strong in
others (games, medical)

JavaScript
● WebGL is surprisingly popular

OpenGL
● Open source with many

implementations
● Well-designed, old, and still evolving
● Fairly cross-platform

DirectX/Direct3d (Microsoft)
● Microsoft™ only
● Dependable updates

Mantle (AMD)
● Targeted at game developers
● AMD-specific

Higher-level commercial libraries
● RenderMan
● AutoDesk / SoftImage

64

OpenGL
OpenGL is…
● Hardware-independent
● Operating system independent
● Vendor neutral

On many platforms
● Great support on Windows, Mac,

linux, etc
● Support for mobile devices with

OpenGL ES
● Android, iOS (but not

Windows Phone)
● Android Wear watches!

● Web support with WebGL

A state-based renderer
● many settings are configured

before passing in data; rendering
behavior is modified by existing
state

Accelerates common 3D graphics
operations
● Clipping (for primitives)
● Hidden-surface removal

(Z-buffering)
● Texturing, alpha blending

NURBS and other advanced
primitives (GLUT)

65

Mobile GPUs

● OpenGL ES 1.0-3.2
● A stripped-down version

of OpenGL
● Removes functionality

that is not strictly
necessary on mobile
devices (like recursion!)

● Devices
● iOS: iPad, iPhone, iPod

Touch
● Android phones
● PlayStation 3, Nintendo

3DS, and more

OpenGL ES 2.0 rendering (iOS)

66

WebGL

● JavaScript library for 3D
rendering in a web browser
● Based on OpenGL ES 2.0
● Many supporting JS libraries
● Even gwt, angular, dart...

● Most modern browsers
support WebGL, even mobile
browsers
● Enables in-browser 3D games
● Enables realtime

experimentation with glsl
shader code

Samples from Shadertoy.com

67

Vulkan

Vulkan is the next generation of
OpenGL: a cross-platform open
standard aimed at pure performance
on modern hardware

Compared to OpenGL, Vulkan--
● Reduces CPU load
● Has better support of multi-CPU

core architectures
● Gives finer control of the GPU
--but--
● Drawing a few primitives can take 1000s of lines of code
● Intended for game engines and code that must be very well optimized

The Talos Principle running on Vulkan (via www.geforce.com)

68

OpenGL in Java - choices
JOGL: “Java bindings for
OpenGL”
jogamp.org/jogl
JOGL apps can be deployed as
applications or as applets, making it
suitable for educational web demos
and cross-platform applications.
● If the user has installed the latest

Java, of course.
● And if you jump through

Oracle’s authentication hoops.
● And… let’s be honest, 1998

called, it wants its applets back.

JOGL shaders in action.
Image from Wikipedia

LWJGL: “Lightweight
Java Games Library”
www.lwjgl.org
LWJGL is targeted at game
developers, so it’s got a solid
threading model and good support for
new input methods like joysticks,
gaming mice,
and the Oculus
Rift.

69

http://jogamp.org/jogl/www/
http://www.lwjgl.org/

The CPU (your processor and friend) delivers data to the GPU
(Graphical Processing Unit).
● The GPU takes in streams of vertices, colors, texture coordinates and

other data; constructs polygons and other primitives; then uses
shaders to draw the primitives to the screen pixel-by-pixel.

● The GPU processes the vertices according to the state set by the
CPU; for example, “every trio of vertices describes a triangle”.

This process is called the rendering pipeline. Implementing the rendering
pipeline is a joint effort between you and the GPU.

You’ll write shaders in the OpenGL shader language, GLSL.
You’ll write vertex and fragment shaders. (And maybe others.)

OpenGL architecture

70

The OpenGL rendering pipeline

An OpenGL application assembles
sets of primitives, transforms and
image data, which it passes to
OpenGL’s GLSL shaders.
● Vertex shaders process every vertex

in the primitives, computing info
such as position of each one.

● Fragment shaders compute the
color of every fragment of every
pixel covered by every primitive.

Primitives and image data

Alpha, stencil, depth tests
Framebuffer blending

Transform and lighting

Primitive assembly

Clipping

Texturing

Fog, antialiasing

Application

Vertex

Geometry

Fragment

Framebuffer

The OpenGL rendering pipeline
(a massively simplified view)

71

Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and ATI (bottom)

72

OpenGL: Shaders

OpenGL shaders give the
user control over each
vertex and each fragment
(each pixel or partial
pixel) interpolated
between vertices.
After vertices are processed, polygons are rasterized. During
rasterization, values like position, color, depth, and others are
interpolated across the polygon. The interpolated values are
passed to each pixel fragment.

73

Think parallel

Shaders are compiled from within your code
● They used to be written in assembler
● Today they’re written in high-level languages
● Vulkan’s SPIR-V lets developers code in high-level GLSL but

tune at the machine code level

GPUs typically have multiple processing units
That means that multiple shaders execute in parallel
● We’re moving away from the purely-linear flow of early “C”

programming models

74

Shader example one – ambient lighting
#version 330

uniform mat4 mvp;

in vec4 vPos;

void main() {
 gl_Position = mvp * vPos;
}

#version 330

out vec4 fragmentColor;

void main() {
 fragmentColor =
 vec4(0.2, 0.6, 0.8, 1);
}

// Vertex Shader // Fragment Shader

75

Vertex outputs become fragment inputs
#version 330

uniform mat4 mvp;

in vec4 vPos;
out vec3 c;

void main() {
 gl_Position = mvp * vPos;
}

#version 330

in vec3 c;
out vec4 fragmentColor;

void main() {
 fragmentColor = vec4(c, 1);
}

Input

Output

Color
output

Input

interpolation

76

Program

OpenGL / GLSL API - setup
To install and use a shader in OpenGL:
1. Create one or more empty shader objects with

glCreateShader.
2. Load source code, in text, into the shader with

glShaderSource.
3. Compile the shader with

glCompileShader.
4. Create an empty program object with

glCreateProgram.
5. Bind your shaders to the program with

glAttachShader.
6. Link the program (ahh, the ghost of C!) with

glLinkProgram.
7. Activate your program with

glUseProgram.

Vertex
shader

Fragment
shader

Compiler

OpenGL

Linker

77

Shader gallery II

Above: Kevin Boulanger (PhD thesis,
“Real-Time Realistic Rendering of Nature
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)

78

What will you have to write?

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

79

Geometry in OpenGL

The atomic datum of
OpenGL is a vertex.
● 2d or 3d
● Specify arbitrary details

The fundamental primitives
in OpenGL are the line
segment and triangle.
● Very hard to get wrong
● {vertices} + {ordering}

= surface

80

Geometry in OpenGL

Vertex buffer objects store arrays of vertex
data--positional or descriptive. With a vertex
buffer object (“VBO”) you can compute all
vertices at once, pack them into a VBO, and
pass them to OpenGL en masse to let the GPU
processes all the vertices together.

To group different kinds of vertex data together,
you can serialize your buffers into a single
VBO, or you can bind and attach them to
Vertex Array Objects. Each vertex array
object (“VAO”) can contain multiple VBOs.

Although not required, VAOs help you to
organize and isolate the data in your VBOs.

Vertex Array
Object

Vertex Buffer
(positions)

Vertex Buffer
(colors)

Vertex Buffer
(normals)

Vertex Buffer
(texture info)

81

HelloGL.java [1/4]
 ///
 // Set up GLFW window

 GLFWErrorCallback errorCallback = GLFWErrorCallback.createPrint(System.err);
 GLFW.glfwSetErrorCallback(errorCallback);
 GLFW.glfwInit();
 GLFW.glfwWindowHint(GLFW.GLFW_CONTEXT_VERSION_MAJOR, 3);
 GLFW.glfwWindowHint(GLFW.GLFW_CONTEXT_VERSION_MINOR, 3);
 GLFW.glfwWindowHint(GLFW.GLFW_OPENGL_PROFILE, GLFW.GLFW_OPENGL_CORE_PROFILE);
 GLFW.glfwWindowHint(
 GLFW.GLFW_OPENGL_FORWARD_COMPAT, GLFW.GLFW_TRUE);
 long window = GLFW.glfwCreateWindow(
 800 /* width */, 600 /* height */, "HelloGL", 0, 0);
 GLFW.glfwMakeContextCurrent(window);
 GLFW.glfwSwapInterval(1);
 GLFW.glfwShowWindow(window);

 ///
 // Set up OpenGL

 GL.createCapabilities();
 GL11.glClearColor(0.2f, 0.4f, 0.6f, 0.0f);
 GL11.glClearDepth(1.0f);

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics82

https://github.com/AlexBenton/AdvancedGraphics

HelloGL.java [2/4]
 //////////////////////////////////
 // Set up minimal shader programs

 // Vertex shader source
 String[] vertex_shader = {
 "#version 330\n",
 "in vec3 v;",
 "void main() {",
 " gl_Position = ",
 " vec4(v, 1.0);",
 "}"
 };

 // Fragment shader source
 String[] fragment_shader = {
 "#version 330\n",
 "out vec4 frag_colour;",
 "void main() {",
 " frag_colour = ",
 " vec4(1.0);",
 "}"
 };

 // Compile vertex shader
 int vs = GL20.glCreateShader(
 GL20.GL_VERTEX_SHADER);
 GL20.glShaderSource(
 vs, vertex_shader);
 GL20.glCompileShader(vs);

 // Compile fragment shader
 int fs = GL20.glCreateShader(
 GL20.GL_FRAGMENT_SHADER);
 GL20.glShaderSource(
 fs, fragment_shader);
 GL20.glCompileShader(fs);

 // Link vertex and fragment
 // shaders into active program
 int program =
 GL20.glCreateProgram();
 GL20.glAttachShader(program, vs);
 GL20.glAttachShader(program, fs);
 GL20.glLinkProgram(program);
 GL20.glUseProgram(program);

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics83

https://github.com/AlexBenton/AdvancedGraphics

HelloGL.java [3/4]
///
// Set up data

// Fill a Java FloatBuffer object with memory-friendly floats
float[] coords = new float[] { -0.5f, -0.5f, 0, 0, 0.5f, 0, 0.5f, -0.5f, 0 };
FloatBuffer fbo = BufferUtils.createFloatBuffer(coords.length);
fbo.put(coords); // Copy the vertex coords into the
floatbuffer
fbo.flip(); // Mark the floatbuffer ready for reads

// Store the FloatBuffer's contents in a Vertex Buffer Object
int vbo = GL15.glGenBuffers(); // Get an OGL name for the VBO
GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vbo); // Activate the VBO
GL15.glBufferData(GL15.GL_ARRAY_BUFFER, fbo, GL15.GL_STATIC_DRAW); // Send VBO data to GPU

// Bind the VBO in a Vertex Array Object
int vao = GL30.glGenVertexArrays(); // Get an OGL name for the VAO
GL30.glBindVertexArray(vao); // Activate the VAO
GL20.glEnableVertexAttribArray(0); // Enable the VAO's first attribute (0)
GL20.glVertexAttribPointer(0, 3, GL11.GL_FLOAT, false, 0, 0); // Link VBO to VAO attrib 0

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics84

https://github.com/AlexBenton/AdvancedGraphics

HelloGL.java [4/4]
 ///
 // Loop until window is closed

 while (!GLFW.glfwWindowShouldClose(window)) {
 GLFW.glfwPollEvents();

 GL11.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT);
 GL30.glBindVertexArray(vao);
 GL11.glDrawArrays(GL11.GL_TRIANGLES, 0 /* start */, 3 /* num vertices */);

 GLFW.glfwSwapBuffers(window);
 }

 ///
 // Clean up

 GL15.glDeleteBuffers(vbo);
 GL30.glDeleteVertexArrays(vao);
 GLFW.glfwDestroyWindow(window);
 GLFW.glfwTerminate();
 GLFW.glfwSetErrorCallback(null).free();

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics85

https://github.com/AlexBenton/AdvancedGraphics

Binding multiple buffers in a VAO

Need more info? We can pass more than just coordinate data--we can create as
many buffer objects as we want for different types of per-vertex data. This
lets us bind vertices with normals, colors, texture coordinates, etc...

Here we bind a vertex buffer object for position data and another for normals:
int vao = glGenVertexArrays();
glBindVertexArray(vao);
GL20.glEnableVertexAttribArray(0);
GL20.glEnableVertexAttribArray(1);
GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vbo_0);
GL20.glVertexAttribPointer(0, 3, GL11.GL_FLOAT, false, 0, 0);
GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vbo_1);
GL20.glVertexAttribPointer(1, 3, GL11.GL_FLOAT, false, 0, 0);

Later, to render, we work only with the vertex array:
glBindVertexArray(vao);
glDrawArrays(GL_LINE_STRIP, 0, data.length);

Caution--all VBOs in a VAO must describe the same number of vertices!

86

Accessing named GLSL attributes from Java
// Vertex shader
// …

#version 330

in vec3 v;
void main() {
 gl_Position =
 vec4(v, 1.0);
}

// …

The HelloGL sample code hardcodes the
assumption that the vertex shader input field
‘v’ is the zeroeth input (position 0).

That’s unstable: never rely on a fixed ordering.
Instead, fetch the attrib location:
int vLoc =
GL20.glGetAttribLocation(program, "v");

GL20.glEnableVertexAttribArray(vLoc);
GL20.glVertexAttribPointer(vLoc,
 3, GL_FLOAT, false, 0, 0);

This enables greater flexibility and Java code
that can adapt to dynamically-changing
vertex and fragment shaders.

// …

glEnableVertexAttribArray(0);
glVertexAttribPointer(0,
 3, GL_FLOAT, false, 0, 0);

// …

87

You configure how OpenGL interprets the vertex buffer. Vertices can be
interpreted directly, or indexed with a separate integer indexing buffer. By
re-using vertices and choosing ordering / indexing carefully, you can reduce
the number of raw floats sent from the CPU to the GPU dramatically.

Options include line primitives--
● GL_LINES
● GL_LINE_STRIP
● GL_LINE_LOOP

--triangle primitives--
● GL_TRIANGLES
● GL_TRIANGLE_STRIP
● GL_TRIANGLE_FAN

--and more. OpenGL also offers
backface culling and other optimizations.

Improving data throughput

3

4,9

5

6,11

8 10 12

2,7

1

88

Triangle-strip vertex indexing
(counter-clockwise ordering)

Memory management:
Lifespan of an OpenGL object

Most objects in OpenGL are created and deleted explicitly. Because these entities
live in the GPU, they’re outside the scope of Java’s garbage collection.
This means that you must handle your own memory cleanup.

// create and bind buffer object
int name = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, name);

// work with your object
// …

// delete buffer object, free memory
glDeleteBuffers(name);

89

Emulating classic OpenGL1.1
direct-mode rendering in modern GL

The original OpenGL API allowed
you to use direct mode to send
data for immediate output:

glBegin(GL_QUADS);
 glColor3f(0, 1, 0);
 glNormal3f(0, 0, 1);
 glVertex3f(1, -1, 0);
 glVertex3f(1, 1, 0);
 glVertex3f(-1, 1, 0);
 glVertex3f(-1, -1, 0);
glEnd();

Direct mode was very inefficient: the
GPU was throttled by the CPU.

You can emulate the GL1.1 API:
class GLVertexData {
 void begin(mode) { … }
 void color(color) { … }
 void normal(normal) { … }
 void vertex(vertex) { … }
 …
 void compile() { … }
}

The method compile() can
encapsulate all the vertex buffer
logic, making each instance a
self-contained buffer object.

Check out a working example in the
class framework.GLVertexData on
the course github repo.

90

Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner
ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and
raycast scenes

91

https://github.com/AlexBenton/AdvancedGraphics
http://shadertoy.com

Advanced Graphics

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

OpenGL
and

Shaders II

92

2.Perspective and Camera Control

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

93

Getting some perspective

To add 3D perspective to our flat model, we face three
challenges:

● Compute a 3D perspective matrix
● Pass it to OpenGL, and on to the GPU
● Apply it to each vertex

To do so we’re going to need to apply our perspective matrix
in the shader, which means we’ll need to build our own 4x4
perspective transform.

94

4x4 perspective matrix transform

Every OpenGL package provides utilities to build a
perspective matrix. You’ll usually find a method named
something like glGetFrustum() which will assemble a 4x4
grid of floats suitable for passing to OpenGL.

Or you can build your own:
α: Field of view, typically 50°

ar: Aspect ratio of width over
height

NearZ: Near clip plane

FarZ: Far clip plane

P =

95

Writing uniform data from Java

Once you have your perspective matrix, the next step is to copy it out to the
GPU as a Mat4, GLSL’s 4x4 matrix type.

1. Convert your floats to a FloatBuffer:

2. Write the FloatBuffer to the named uniform:
int uniformLoc = GL20.glGetUniformLocation(
 program, “name”);
if (uniformLoc != -1) {
 GL20.glUniformMatrix 4fv(uniformLoc, false, buffer);
}

96

float data[][] = /* your 4x4 matrix here */
FloatBuffer buffer = BufferUtils.createFloatBuffer(16);
for (int col = 0; col < 4; col++) {
 for (int row = 0; row < 4; row++) {
 buffer.put((float) (data[row][col]));
 }
}
buffer.flip();

Reading uniform data in GLSL

The FloatBuffer output is received in the shader as a
uniform input of type Mat4.

This shader takes a matrix and applies it to each vertex:
#version 330

uniform mat4 modelToScreen;

in vec4 vPosition;

void main() {
 gl_Position = modelToScreen * vPosition;
}

Use uniforms for fields that
are constant throughout the
rendering pass, such as
transform matrices and
lighting coordinates. 97

Object position and camera position: a
‘pipeline’ model of matrix transforms

Object definition

Local or “model” space

Scene composition
Viewing frame definition
Lighting definition

World space

Backface culling
Viewing frustum culling
HUD definition

Viewing

space

Hidden-surface removal
Scan conversion
Shading

3D screen space

Image

Display space

L2W

W2V

V2S

S2D

P’ = S2D • V2S • W2V • L2W
• PL

P’ = S2D • V2S • W2V • L2W • PL
Each of these transforms can be
represented by a 4x4 matrix.

98

#version 330

uniform mat4 modelToWorld;
uniform mat4 worldToCamera;
uniform mat4 cameraToScreen;

in vec3 v;

void main() {
 gl_Position = cameraToScreen
 * worldToCamera
 * modelToWorld
 * vec4(v, 1.0);
}

A flexible 3D graphics framework will
track each transform:
● The object’s current transform
● The camera’s transform
● The viewing perspective

transform
These matrices are all “constants” for
the duration of a single frame of
rendering. Each can be written to a
16-float buffer and sent to the GPU
with glUniformMatrix4fv.
Remember to fetch uniform names
with glGetUniformLocation, never
assume ordering.

The pipeline model in OpenGL & GLSL

99

The pipeline model in software:
The matrix stack design pattern

A common design pattern in 3D graphics, especially when
objects can contain other objects, is to use matrix stacks to
store stacks of matrices. The topmost matrix is the
product of all matrices below.
● This allows you to build a local frame of reference—

local space—and apply transforms within that space.
● Remember: matrix multiplication is associative but not

commutative.
■ABC = A(BC) = (AB)C ≠ ACB ≠ BCA

Pre-multiplying matrices that will be used more
than once is faster than multiplying many
matrices every time you render a primitive.

A

AB

ABC

100

Matrix stacks

Matrix stacks are designed for nested relative
transforms.

pushMatrix();
 translate(0,0,-5);
 pushMatrix();
 rotate(45,0,1,0);
 render();
 popMatrix();
 pushMatrix();
 rotate(-45,0,1,0);
 render();
 popMatrix();
popMatrix();

identity

T

identity

T

T • R1

identity

T

T • R2

identity

T

…

render your
geometry here

101

Scene graphs

A scene graph is a tree of
scene elements where a
child’s transform is relative
to its parent.

The final transform of the
child is the ordered product
of all of its ancestors in the
tree.

MfingerToWorld =
(Mperson • Mtorso • Marm • Mhand • Mfinger)

Person

Torso

Arm Arm Leg …

Hand

Finger

…

…

…

102

void renderLevel(GL gl, int level, float t) {
 pushMatrix();
 rotate(t, 0, 1, 0);
 renderSphere(gl);
 if (level > 0) {
 scale(0.75f, 0.75f, 0.75f);
 pushMatrix();
 translate(1, -0.75f, 0);
 renderLevel(gl, level-1, t);
 popMatrix();
 pushMatrix();
 translate(-1, -0.75f, 0);
 renderLevel(gl, level-1, t);
 popMatrix();
 }
 popMatrix();
}

Hierarchical modeling in action

103

Hierarchical modeling in action

“HierarchyDemo.java” - github.com/AlexBenton/AdvancedGraphics104

https://github.com/AlexBenton/AdvancedGraphics

3. Lighting and Shading

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

105

Lighting and Shading (a quick refresher)

Recall the classic lighting equation:
● I = kA + kD(N•L) + kS(E•R)

n

where…
● kA is the ambient lighting coefficient of the object or scene
● kD(N•L) is the diffuse component of surface illumination (‘matte’)
● kS(E•R)

n is the specular component of surface illumination (‘shiny’)
where R = L - 2(L•N)N

We compute color by vertex or by polygon fragment:
● Color at the vertex: Gouraud shading
● Color at the polygon fragment: Phong shading

Vertex shader outputs are interpolated across fragments, so
code is clean whether we’re interpolating colors or normals.

106

Lighting and Shading: required data

Shading means we need extra data about vertices.
For each vertex our Java code will need to provide:
● Vertex position
● Vertex normal
● [Optional] Vertex color, kA / kD / kS, reflectance, transparency…

We also need global state:
● Camera perspective transform
● Camera position and orientation, represented as a transform
● Object position and orientation, to modify the vertex positions above
● A list of light positions, ideally in world coordinates

107

Shader sample –
Gouraud shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;
uniform vec3 lightPosition;

in vec4 v;
in vec3 n;

out vec4 color;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 p = (modelToWorld * v).xyz;
 vec3 n = normalize(normalToWorld * n);
 vec3 l = normalize(lightPosition - p);
 float ambient = 0.2;
 float diffuse = 0.8 * clamp(0, dot(n, l), 1);

 color = vec4(purple
 * (ambient + diffuse), 1.0);
 gl_Position = modelToScreen * v;
}

#version 330

in vec4 color;

out vec4 fragmentColor;

void main() {
 fragmentColor = color;
}

Diffuse lighting
 d = kD(N•L)

expressed as a shader

108

Shader sample –
Phong shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;

in vec4 v;
in vec3 n;

out vec3 position;
out vec3 normal;

void main() {
 normal = normalize(
 normalToWorld * n);
 position =
 (modelToWorld * v).xyz;
 gl_Position =
 modelToScreen * v;
}

#version 330

uniform vec3 eyePosition;
uniform vec3 lightPosition;

in vec3 position;
in vec3 normal;

out vec4 fragmentColor;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 n = normalize(normal);
 vec3 l = normalize(lightPosition - position);
 vec3 e = normalize(position - eyePosition);
 vec3 r = reflect(l, n);

 float ambient = 0.2;
 float diffuse = 0.4 * clamp(0, dot(n, l), 1);
 float specular = 0.4 *
 pow(clamp(0, dot(e, r), 1), 2);

 fragmentColor = vec4(purple *
 (ambient + diffuse + specular), 1.0);
}

a = kA
d = kD(N•L)
s = kS(E•R)n

GLSL includes handy helper methods for
illumination such as reflect()--perfect for
specular highlights.

109

Shader sample – Gooch shading

Image source: “A
Non-Photorealistic
Lighting Model For
Automatic Technical
Illustration”, Gooch,
Gooch, Shirley and
Cohen (1998).
Compare the Gooch
shader, above, to the
Phong shader (right).

Gooch shading is an example of non-realistic
rendering. It was designed by Amy and Bruce
Gooch to replace photorealistic lighting with a
lighting model that highlights structural and
contextual data.
● They use the term of the conventional lighting

equation to choose a map between ‘cool’ and ‘warm’
colors.
○ This is in contrast to conventional illumination where

lighting simply scales the underlying surface color.
● This, combined with edge-highlighting through a

second renderer pass, creates models which look more
like engineering schematic diagrams.

110

Shader sample –
Gooch shading

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform mat4 modelToCamera;
uniform mat4 modelToScreen;
uniform mat3 normalToCamera;

vec3 LightPosition = vec3(0, 10, 4);

in vec4 vPosition;
in vec3 vNormal;

out float NdotL;
out vec3 ReflectVec;
out vec3 ViewVec;

void main()
{
 vec3 ecPos = vec3(modelToCamera * vPosition);
 vec3 tnorm = normalize(normalToCamera * vNormal);
 vec3 lightVec = normalize(LightPosition - ecPos);
 ReflectVec = normalize(reflect(-lightVec, tnorm));
 ViewVec = normalize(-ecPos);
 NdotL = (dot(lightVec, tnorm) + 1.0) * 0.5;
 gl_Position = modelToScreen * vPosition;
}

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform vec3 vColor;

float DiffuseCool = 0.3;
float DiffuseWarm = 0.3;
vec3 Cool = vec3(0, 0, 0.6);
vec3 Warm = vec3(0.6, 0, 0);

in float NdotL;
in vec3 ReflectVec;
in vec3 ViewVec;

out vec4 result;

void main()
{
 vec3 kcool = min(Cool + DiffuseCool * vColor, 1.0);
 vec3 kwarm = min(Warm + DiffuseWarm * vColor, 1.0);
 vec3 kfinal = mix(kcool, kwarm, NdotL);

 vec3 nRefl = normalize(ReflectVec);
 vec3 nview = normalize(ViewVec);
 float spec = pow(max(dot(nRefl, nview), 0.0), 32.0);

 if (gl_FrontFacing) {
 result = vec4(min(kfinal + spec, 1.0), 1.0);
 } else {
 result = vec4(0, 0, 0, 1);
 }
}

111

Shader sample – Gooch shading
In the vertex shader source, notice the use of the built-in ability to

distinguish front faces from back faces:
if (gl_FrontFacing) {...

This supports distinguishing front faces (which should be shaded
smoothly) from the edges of back faces (which will be drawn in heavy
black.)
In the fragment shader source, this is used to choose the weighted color
by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL);
Here mix() is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor is NdotL, the
lighting value.

112

Shader sample – Gooch shading

113

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 vec3 color = isOutsideFace ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

Procedural texturing in the
fragment shader

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 bool isMouth =

 (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

(Code truncated for brevity--again, check out
the source on github for how I did the curved
mouth and oval eyes.)

// ...

const vec3 CENTER = vec3(0, 0, 1);

const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);

const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);

// ...

void main() {

 bool isOutsideFace = (length(position - CENTER) >
1);

 bool isEye = (length(position - LEFT_EYE) < 0.1)

 || (length(position - RIGHT_EYE) < 0.1);

 bool isMouth = (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

114

Advanced surface effects

● Specular highlighting
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

115

Antialiasing on the GPU

Hardware antialiasing can dramatically
improve image quality.
● The naïve approach is to supersample the image
● This is easier in shaders than it is in standard

software
● But it really just postpones the problem.

Several GPU-based antialiasing solutions
have been found.
● Eric Chan published an elegant polygon-based

antialiasing approach in 2004 which uses the GPU
to prefilter the edges of a model and then blends
the filtered edges into the original polygonal
surface. (See figures at right.)

116

Antialiasing on the GPU

One clever form of antialiasing is adaptive analytic
prefiltering.
● The precision with which an edge is rendered to the screen is

dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in the shader language by the methods
dFdx(F) and dFdy(F).
● These methods return the derivative with respect to X and Y of some

variable F.
● These are commonly used in choosing the filter width for antialiasing

procedural textures.

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 117

Particle systems on the GPU

Shaders extend the use of texture memory
dramatically. Shaders can write to texture
memory, and textures are no longer limited
to being two-dimensional planes of
RGB(A).
● A particle systems can be represented

by storing a position and velocity for
every particle.

● A fragment shader can render a particle
system entirely in hardware by using
texture memory to store and evolve
particle data.

Image by Michael Short

118

Tessellation shaders

One use of tessellation is in rendering
geometry such as game models or terrain
with view-dependent Levels of Detail
(“LOD”).
Another is to do with geometry what

ray-tracing did with bump-mapping:
high-precision realtime geometric
deformation.

Tesselation is a new shader type
introduced in OpenGL 4.x. Tesselation
shaders generate new vertices within
patches, transforming a small number of
vertices describing triangles or quads
into a large number of vertices which
can be positioned individually.

jabtunes.com’s WebGL tessellation demo
Florian Boesch’s LOD terrain demo

http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

N
ot

e
ho

w
 tr

ia
ng

le
s a

re
 sm

al
l a

nd

de
ta

ile
d

cl
os

e
to

 th
e

ca
m

er
a,

 b
ut

be

co
m

e
ve

ry
 la

rg
e

an
d

co
ar

se
 in

th

e
di

st
an

ce
.

119

http://jabtunes.com/labs/3d/webgl_geometry_tessellation_exploding.html#Tessellation
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

Tessellation shaders

How it works:
● You tell OpenGL how many vertices a single

patch will have:
glPatchParameteri(GL_PATCH_VERTICES, 4);

● You tell OpenGL to render your patches:
glDrawArrays(GL_PATCHES, first, numVerts);

● The Tessellation Control Shader specifies output
parameters defining how a patch is split up:
gl_TessLevelOuter[] and
gl_TessLevelInner[].
These control the number of vertices per primitive
edge and the number of nested inner levels,
respectively.

Vertex shader

Tessellation Control Shader

Tessellation primitive generator

Tessellation Evaluation Shader

Geometry shader

Fragment shader

...

120

Tessellation shaders

● The tessellation primitive
generator generates new
vertices along the outer edge
and inside the patch, as
specified by
gl_TessLevelOuter[] and
gl_TessLevelInner[].

Each field is an array. Within the
array, each value sets the number of
intervals to generate during
subprimitive generation.
Triangles are indexed similarly, but

only use the first three Outer and
the first Inner array field.

gl_TessLevelOuter[3] = 5.0

gl_TessLevelOuter[1] = 3.0

gl_TessLevelInner[1] = 4.0

g
l
_
T
e
s
s
L
e
v
e
l
I
n
n
e
r
[
0
]

=

3
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
0
]

=

2
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
2
]

=

2
.
0

121

Tessellation shaders
● The generated vertices are

then passed to the
Tesselation Evaluation
Shader, which can update
vertex position, color,
normal, and all other
per-vertex data.

● Ultimately the complete
set of new vertices is
passed to the geometry
and fragment shaders.

Image credit: Philip Rideout
http://prideout.net/blog/?p=48122

http://prideout.net/blog/?p=48

CPU vs GPU – an object demonstration

“NVIDIA: Mythbusters - CPU vs GPU”
https://www.youtube.com/watch?v=-P28LKWTzrI

R
ed

ux
: h

ttp
://

w
w

w
.y

ou
tu

be
.c

om
/w

at
ch

?v
=f

K
K

93
3K

K
6G

g

123

https://www.youtube.com/watch?v=-P28LKWTzrI
http://www.youtube.com/watch?v=fKK933KK6Gg
http://www.youtube.com/watch?v=-P28LKWTzrI

Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner
ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and
raycast scenes

124

https://github.com/AlexBenton/AdvancedGraphics
http://shadertoy.com

GPU Ray Marching
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Advanced Graphics

125

GPU Ray-tracing

Ray tracing 101: “Choose the color of
the pixel by firing a ray through and
seeing what it hits.”

Ray tracing 102:
“Let the pixel make up
its own mind.”

126

GPU Ray-tracing

1. Use a minimal fragment shader
(no transforms)

2. Set up OpenGL with minimal
geometry, a single quad

3. Bind a vec2 to each vertex
specifying ‘texture’ coordinates

4. Implement raytracing in GLSL
per pixel:
a. For each pixel, compute the ray

from the eye through the pixel,
using the interpolated texture
coordinate to identify the pixel

b. Run the ray tracing algorithm
for every ray

127

vec3 getRayDir(
 vec3 camDir,
 vec3 camUp,
 vec2 texCoord) {
 vec3 camSide = normalize(
 cross(camDir, camUp));
 vec2 p = 2.0 * texCoord - 1.0;
 p.x *= iResolution.x
 / iResolution.y;
 return normalize(
 p.x * camSide
 + p.y * camUp
 + iPlaneDist * camDir);
}

// Window dimensions
uniform vec2 iResolution;

// Camera position
uniform vec3 iRayOrigin;

// Camera facing direction
uniform vec3 iRayDir;

// Camera up direction
uniform vec3 iRayUp;

// Distance to viewing plane
uniform float iPlaneDist;

// ‘Texture’ coordinate of each
// vertex, interpolated across
// fragments (0,0) → (1,1)
in vec2 texCoord;

GPU Ray-tracing

128128

Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) {
 float OdotD = dot(rayorig - pos, raydir);
 float OdotO = dot(rayorig - pos, rayorig - pos);
 float base = OdotD * OdotD - OdotO + radius * radius;

 if (base >= 0) {
 float root = sqrt(base);
 float t1 = -OdotD + root;
 float t2 = -OdotD - root;
 if (t1 >= 0 || t2 >= 0) {
 float t = (t1 < t2 && t1 >= 0) ? t1 : t2;
 vec3 pt = rayorig + raydir * t;
 vec3 normal = normalize(pt - pos);
 return Hit(pt, normal, t);
 }
 }
 return Hit(vec3(0), vec3(0), -1);
}

GPU Ray-tracing

129

An alternative to raytracing:
Ray-marching

An alternative to classic ray-tracing is
ray-marching, in which we take a
series of finite steps along the ray until
we strike an object or exceed the
number of permitted steps.

● Also sometimes called ray casting
● Scene objects only need to answer,

 “has this ray hit you? y/n”
● Great solution for data like height fields
● Unfortunately…

○ often involves many steps
○ too large a step size can lead to lost

intersections (step over the object)
○ an if() test in the heart of a for() loop

is very hard for the GPU to optimize

130

GPU Ray-marching:
Signed Distance Fields

Ray-marching can be dramatically
improved, to impressive realtime
GPU performance, using signed
distance fields:

1. Fire ray into scene
2. At each step, measure distance field

function: d(p) = [distance to nearest
object in scene]

3. Advance ray along ray heading by
distance d, because the nearest
intersection can be no closer than d

This is also sometimes called ‘sphere tracing’. Early paper:

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

131

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

float sphere(vec3 p, float r) {
 return length(p) - r;
}

float cube(vec3 p, vec3 dim) {
 vec3 d = abs(p) - dim;
 return min(max(d.x,
 max(d.y, d.z)), 0.0)
 + length(max(d, 0.0));
}

float cylinder(vec3 p, vec3 dim)
{
 return length(p.xz - dim.xy)
 - dim.z;
}

float torus(vec3 p, vec2 t) {
 vec2 q = vec2(
 length(p.xz) - t.x, p.y);
 return length(q) - t.y;
}

Signed distance functions

132

An SDF returns the minimum possible
distance from point p to the surface
it describes.

The sphere, for instance, is the distance
from p to the center of the sphere,
minus the radius.

Negative values indicate a sample
inside the surface, and still express
absolute distance to the surface.

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields

Raymarching signed distance fields
vec3 raymarch(vec3 pos, vec3 raydir) {
 int step = 0;
 float d = getSdf(pos);

 while (abs(d) > 0.001 && step < 50) {
 pos = pos + raydir * d;
 d = getSdf(pos); // Return sphere(pos) or any other
 step++;
 }

 return
 (step < 50) ? illuminate(pos, rayorig) : background;
}

133

Visualizing step count

Final image Distance field

Brighter = more steps, up to 50

134

Combining SDFs
We combine SDF models by choosing
which is closer to the sampled point.

● Take the union of two SDFs by
taking the min() of their
functions.

● Take the intersection of two
SDFs by taking the max() of their
functions.

● The max() of function A and the
negative of function B will return
the difference of A - B.

By combining these binary operations
we can create functions which describe
very complex primitives.

135

Combining SDFs
min(A, B)

(union)

max(A, B)
(intersection)

max(-A, B)
(difference)

136

Taking the min(), max(), etc of two SDFs yields a
sharp discontinuity. Interpolating the two SDFs with
a smooth polynomial yields a smooth distance curve,
blending the models:

Blending SDFs

float blend(float a, float b, float k) {
 a = pow(a, k);
 b = pow(b, k);
 return pow((a * b) / (a + b), 1.0 / k);
}

Sample blending function (Quilez)

137

Transforming SDF geometry

To rotate, translate or scale an SDF model, apply the inverse transform to the
input point within your distance function.
Ex:

This renders a sphere centered at (0, 3, 0).
More prosaically, assemble your local-to-world transform as usual, but apply its
inverse to the pt within your distance function.

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

float f(vec3 pt) {
 return sphere(pt - vec3(0, 3, 0));
}

138

Transforming SDF geometry
float fScene(vec3 pt) {

 // Scale 2x along X
 mat4 S = mat4(
 vec4(2, 0, 0, 0),
 vec4(0, 1, 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Rotation in XY
 float t = sin(time) * PI / 4;
 mat4 R = mat4(
 vec4(cos(t), sin(t), 0, 0),
 vec4(-sin(t), cos(t), 0, 0),
 vec4(0, 0, 1, 0),
 vec4(0, 0, 0, 1));

 // Translate to (3, 3, 3)
 mat4 T = mat4(
 vec4(1, 0, 0, 3),
 vec4(0, 1, 0, 3),
 vec4(0, 0, 1, 3),
 vec4(0, 0, 0, 1));

 pt = (vec4(pt, 1) * inverse(S * R * T)).xyz;

 return sdSphere(pt, 1);
}

139

Transforming SDF geometry

The previous example modified ‘all
of space’ with the same transform,
so its distance functions retain
their local linearity.

We can also apply non-uniform
spatial distortion, such as by
choosing how much we’ll modify
space as a function of where in
space we are.

float fScene(vec3 pt) {
 pt.y -= 1;
 float t = (pt.y + 2.5) * sin(time);
 return sdCube(vec3(
 pt.x * cos(t) - pt.z * sin(t),
 pt.y / 2,
 pt.x * sin(t) + pt.z * cos(t)), vec3(1));
}

140

Find the normal to an SDF

Finding the normal: local gradient

The distance function is locally linear and
changes most as the sample moves directly
away from the surface. At the surface, the
direction of greatest change is therefore
equivalent to the normal to the surface.

Thus the local gradient (the normal) can be
approximated from the distance function.

float d = getSdf(pt);
vec3 normal = normalize(vec3(
 getSdf(vec3(pt.x + 0.0001, pt.y, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y + 0.0001, pt.z)) - d,
 getSdf(vec3(pt.x, pt.y, pt.z + 0.0001)) - d));

141

SDF shadows

Ray-marched shadows are
straightforward: march a ray
towards each light source, don’t
illuminate if the SDF ever drops
too close to zero.

Unlike ray-tracing, soft shadows are
almost free with SDFs: attenuate
illumination by a linear function of
the ray marching near to another
object.

142

float shadow(vec3 pt) {
 vec3 lightDir = normalize(lightPos - pt);
 float kd = 1;
 int step = 0;

 for (float t = 0.1;
 t < length(lightPos - pt)
 && step < renderDepth && kd > 0.001;) {
 float d = abs(getSDF(pt + t * lightDir));
 if (d < 0.001) {
 kd = 0;
 } else {
 kd = min(kd, 16 * d / t);
 }
 t += d;
 step++;
 }
 return kd;
}

Soft SDF shadows

By dividing d by t, we
attenuate the strength
of the shadow as its
source is further from
the illuminated point.

143

Repeating SDF geometry

If we take the modulus of a point’s
position along one or more axes
before computing its signed
distance, then we segment space
into infinite parallel regions of
repeated distance. Space near the
origin ‘repeats’.

With SDFs we get infinite repetition
of geometry for no extra cost.

float fScene(vec3 pt) {
 vec3 pos;
 pos = vec3(mod(pt.x + 2, 4) - 2, pt.y, mod(pt.z + 2, 4) - 2);
 return sdCube(pos, vec3(1));
}

144

Repeating SDF geometry

● sdSphere(4, 4)
 = √(4*4+4*4) - 1
 = ~4.5

float sphere(vec3 pt, float radius) {
 return length(pt) - radius;
}

● sdSphere(
 ((4 + 2) % 4) - 2, 4)
 = √(0*0+4*4) - 1
 = 3

● sdSphere(
 ((4 + 2) % 4) - 2,
 ((4 + 2) % 4) - 2)
 = √(0*0+0*0) - 1
 = -1 // Inside surface

145

SDF - Live demo

146

Recommended reading

Seminal papers:

● John C. Hart et al., “Ray Tracing Deterministic 3-D Fractals”,
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

● John C. Hart, “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit
Surfaces”, http://graphics.cs.illinois.edu/papers/zeno

Special kudos to Inigo Quilez and his amazing blog:

● http://iquilezles.org/www/articles/smin/smin.htm
● http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

Other useful sources:

● Johann Korndorfer, “How to Create Content with Signed Distance Functions”,
https://www.youtube.com/watch?v=s8nFqwOho-s

● Daniel Wright, “Dynamic Occlusion with Signed Distance Fields”,
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf

● 9bit Science, “Raymarching Distance Fields”,
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

147

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf
http://graphics.cs.illinois.edu/papers/zeno
http://iquilezles.org/www/articles/smin/smin.htm
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.youtube.com/watch?v=s8nFqwOho-s
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

Advanced
Graphics

Computational Geometry and
Implicit Surfaces

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

148

Terminology

● We’ll be focusing on discrete (as
opposed to continuous) representation
of geometry; i.e., polygon meshes
● Many rendering systems limit themselves

to triangle meshes
● Many require that the mesh be manifold

● In a closed manifold polygon mesh:
● Exactly two triangles meet at each edge
● The faces meeting at each vertex belong to

a single, connected loop of faces
● In a manifold with boundary:

● At most two triangles meet at each edge
● The faces meeting at each vertex belong to

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s
Fundamentals of Computer Graphics, pp. 262-263

149

Terminology

● We say that a surface is oriented if:
a. the vertices of every face are stored in a fixed

order
b. if vertices i, j appear in both faces f1 and f2, then

the vertices appear in order i, j in one and j, i in
the other

● We say that a surface is embedded if,
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space

with any other vertex, edge or face except where
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate
3-space into two parts: a bounded interior
and an unbounded exterior.

A cube with “anti-clockwise”
oriented faces

Klein bottle:
not an
embedded
surface.

Also, terrible
for holding
drinks.

This slide draws much inspiration from Hughes and Van Dam’s
Computer Graphics: Principles and Practice, pp. 637-642

150

Normal at a vertex

Expressed as a limit,
The normal of surface S at point P is the limit of the
cross-product between two (non-collinear) vectors
from P to the set of points in S at a distance r from P
as r goes to zero. [Excluding orientation.]

151

Normal at a vertex

Using the limit definition, is the ‘normal’ to a
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept

out on a unit sphere between the two normals of the
two faces.

● The ‘normal’ to the surface at a vertex is a space swept
out on the unit sphere between the normals of all of the
adjacent faces.

152

Finding the normal at a vertex

Take the weighted average
of the normals of
surrounding polygons,
weighted by each polygon’s
face angle at the vertex

Face angle: the angle α
formed at the vertex v by the
vectors to the next and
previous vertices in the face F

Note: In this equation, arccos
implies a convex polygon. Why?

NF

153

Gaussian curvature on smooth surfaces

Informally speaking, the
curvature of a surface
expresses “how flat the
surface isn’t”.
● One can measure the

directions in which the
surface is curving most; these
are the directions of principal
curvature, k1 and k2.

● The product of k1 and k2 is the
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia

154

Gaussian curvature on smooth surfaces

Formally, the Gaussian
curvature of a region on a
surface is the ratio between
the area of the surface of the
unit sphere swept out by the
normals of that region and
the area of the region itself.
The Gaussian curvature of a
point is the limit of this ratio
as the region tends to zero
area.

Area on the surface
Area of the projections
of the normals on the
unit sphere

anus
as

0 on a plane

anus
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)

155

Gaussian curvature on discrete surfaces

On a discrete surface, normals do not vary smoothly: the
normal to a face is constant on the face, and at edges and
vertices the normal is—strictly speaking—undefined.
● Normals change instantaneously (as one's point of view travels across an

edge from one face to another) or not at all (as one's point of view travels
within a face.)

The Gaussian curvature of the surface of any polyhedral
mesh is zero everywhere except at the vertices, where it is
infinite.

156

Angle deficit – a better solution for
measuring discrete curvature

The angle deficit AD(v) of a vertex v is defined to be two π
minus the sum of the face angles of the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚

157

Angle deficit

High angle deficit Low angle deficit Negative angle deficit

158

Hmmm…

Angle deficit

159

Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed
surface is
...“a topologically invariant property of a

surface defined as the largest number
of nonintersecting simple closed
curves that can be drawn on the
surface without separating it.”

--mathworld.com
● Informally, it’s the number of

coffee cup handles in the surface.

Genus 0

Genus 1

160

Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:

161

Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces

162

The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that
on a surface S with Euler characteristic χ, the sum of
the angle deficits of the vertices is 2πχ:

Cube:
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron:
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ

163

The Voronoi diagram(2) of a set of
points Pi divides space into
‘cells’, where each cell Ci
contains the points in space
closer to Pi than any other Pj.

The Delaunay triangulation is the
dual of the Voronoi diagram: a
graph in which an edge
connects every Pi which share a
common edge in the Voronoi
diagram.

A Voronoi diagram (dotted lines) and its
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet
domain”, “Thiessen polygons”, “plesiohedra”,
“fundamental areas”, “domain of action”…

Voronoi diagrams

164

Delaunay triangulation applet by Paul Chew ©1997—2007
http://www.cs.cornell.edu/home/chew/Delaunay.html

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal
definition of a Voronoi cell C(S,pi) is
 C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points
of the diagram.

Where three or more boundary edges
meet is a Voronoi point. Each Voronoi
point is at the center of a circle (or
sphere, or hypersphere…) which passes
through the associated generating points
and which is guaranteed to be empty of
all other generating points.

165

http://www.cs.cornell.edu/home/chew/Delaunay.html

Delaunay triangulations and equi-angularity

The equiangularity of any
triangulation of a set of points
S is a sorted list of the angles
(α1… α3t) of the triangles.
● A triangulation is said to be

equiangular if it possesses
lexicographically largest
equiangularity amongst all
possible triangulations of S.

● The Delaunay triangulation
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

166

Delaunay triangulations and empty circles

Voronoi triangulations have
the empty circle property: in
any Voronoi triangulation of S,
no point of S will lie inside the
circle circumscribing any three
points sharing a triangle in the
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

167

Delaunay triangulations and convex hulls
The border of the Delaunay
triangulation of a set of points is
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a
set of points in Rn is the planar
projection of a convex hull in
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft

the points upwards, onto a
parabola in 3D
(P’i={x,y,x2+y2}i). The
resulting polyhedral mesh will
still be convex in 3D.

168

Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points
within the surface equidistant to the two or more
nearest points on the surface.
● This can be used to extract a skeleton of the

surface, for (for example) path-planning
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang

Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha

169

http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan

Fortune’s algorithm
1. The algorithm maintains a sweep line and a

“beach line”, a set of parabolas advancing
left-to-right from each point. The beach line
is the union of these parabolas.
a. The intersection of each pair of

parabolas is an edge of the voronoi
diagram

b. All data to the left of the beach line is
“known”; nothing to the right can
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s

algorithm is O(n log n)

170

GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be

rendered on the GPU,
search all points for the
nearest point

Elegant (and 2D only):
● Render each point as a

discrete 3D cone in
isometric projection, let
z-buffering sort it out

171

Implicit surfaces
Implicit surface modeling(1) is a
way to produce very ‘organic’ or
‘bulbous’ surfaces very quickly
without subdivision or NURBS.
Uses of implicit surface
modelling:
● Organic forms and nonlinear

shapes
● Scientific modeling (electron

orbitals, gravity shells in space,
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force
functions”, “blobby modeling”… 172

How it works
The user controls a set of control
points; each point in space
generates a field of force, which
drops off as a function of distance
from the point. This 3D field of
forces defines an implicit surface:
the set of all the points in space
where the force field sums to a key
value.

Force = 2

1

0.5

0.25 ...
173

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
 a(1- 3r2 / b2) 0 ≤ r < b/3

F(r) = (3a/2)(1-r/b)2 b/3 ≤ r < b
 0 b ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Discovering the surface

An octree is a recursive subdivision of
space which “homes in” on the surface,
from larger to finer detail.
● An octree encloses a cubical volume in space.

You evaluate the force function F(v) at each
vertex v of the cube.

● As the octree subdivides and splits into smaller
octrees, only the octrees which contain some of
the surface are processed; empty octrees are
discarded.

174

Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.
● If some corners are “hot” (above the force limit) and others are

“cold” (below the force limit) then the implicit surface crosses the
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more
rings, which can be triangulated. The normal is known from the
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any
child whose vertices are all hot or all cold.

175

Polygonizing the surface

Recursive subdivision (on a quadtree):

176

Polygonizing the surface
There are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in
the polygonization which must be
addressed separately. ↓

Images courtesy of Diane Lingrand

177

http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose

vertices are the midpoints of the edges which lie
between hot and cold vertices.

● The vertices of the implicit surface can be more
closely approximated by points linearly interpolated
along the edges of the cube by the weights of the
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

178

Implicit surfaces -- demo

179

References
Implicit modelling:
D. Ricci, A Constructive Geometry for Computer Graphics, Computer Journal, May 1973
J Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided Geometric Design, Issue 5, 1988
B Wyvill, C McPheeters, G Wyvill, Soft Objects, Advanced Computer Graphics (Proc. CG Tokyo 1986)
B Wyvill, C McPheeters, G Wyvill, Animating Soft Objects, The Visual Computer, Issue 4 1986
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf
Voxels:
J. Wilhelms and A. Van Gelder, A Coherent Projection Approach for Direct Volume Rendering, Computer Graphics,

35(4):275-284,July 1991.
Voronoi diagrams
M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational Geometry: Algorithms and Applications”, Springer-Verlag,

http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm // Voronois on GPU
Gaussian Curvature
http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html
The Poincaré Formula
http://mathworld.wolfram.com/PoincareFormula.html

180

http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf
http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html
http://mathworld.wolfram.com/PoincareFormula.html

Advanced Graphics

Subdivision
Surfaces

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
181

CAD, CAM, and a new motivation:
shiny things

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.

History
The term spline comes from
the shipbuilding industry: long,
thin strips of wood or metal
would be bent and held in
place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.
Wooden splines can be
described by Cn-continuous
Hermite polynomials which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

The drive for smooth CAD/CAM

● Continuity (smooth curves) can
be essential to the perception of
quality.

● The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

● Bezier (Renault) and de Casteljau
(Citroen) invented Bezier curves
in the 1960s. de Boor (GM)
generalized them to B-splines.

Beziers—a quick review
● A Bezier cubic is a function P(t) defined

by four control points:
● P1 and P4 are the endpoints of the curve
● P2 and P3 define the other two corners of the

bounding polygon.
● The curve fits entirely within the convex

hull of P1...P4.
● Beziers are a subset of a broader class of

splines and surfaces called NURBS: Non
Uniform Rational B-Splines.

● For decades, NURBS patches have been
the bedrock of CAD/CAM.

P1

P2 P3

P4

Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

Bezier (NURBS) patches aren’t the greatest

● NURBS patches are nxm,
forming a mesh of quadrilaterals.
● What if you wanted triangles or

pentagons?
● A NURBS dodecahedron?

● What if you wanted vertices of valence other than
four?

● NURBS expressions for triangular patches,
and more, do exist; but they’re cumbersome.

186

Problems with NURBS patches
● Joining NURBS patches

with Cn continuity
across an edge is
challenging.

● What happens to
continuity at corners
where the number of
patches meeting isn’t
exactly four?

● Animation is tricky:
bending and blending
are doable, but not easy.

Sadly, the world isn’t made up of shapes that
can always be made from one
smoothly-deformed rectangular surface.

187

● The solution:
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding:
we want guaranteed
continuity, without
having to build
everything out of
rectangular patches.
● Applications include

CAD/CAM, 3D
printing, museums and
scanning, medicine,
movies…

Geri’s Game, by Pixar (1997)

188

Subdivision surfaces

● Instead of ticking a parameter t along
a parametric curve (or the parameters
u,v over a parametric grid),
subdivision surfaces repeatedly refine
from a coarse set of control points.

● Each step of refinement adds new
faces and vertices.

● The process converges to a smooth
limit surface.

(Catmull-Clark in action)189

Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two
separate groups during 1978:
● Doo and Sabin found a biquadratic surface
● Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn
[Butterfly subdivision], 1990) led to tools suitable
for CAD/CAM and animation

190

Subdivision surfaces and the movies

● Pixar first demonstrated subdivision
surfaces in 1997 with Geri’s Game.
● Up until then they’d done everything in

NURBS (Toy Story, A Bug’s Life.)
● From 1999 onwards everything they did was

with subdivision surfaces (Toy Story 2,
Monsters Inc, Finding Nemo...)

● Two decades on, it’s all heavily customized -
creases and edges can be detailed by artists
and regions of subdivision can themselves be
dynamically subdivided

191

Useful terms
● A scheme which describes a 1D curve (even if that curve is

travelling in 3D space, or higher) is called univariate, referring
to the fact that the limit curve can be approximated by a
polynomial in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control
points is called an interpolating scheme.

● A scheme which moves away from its
original control points, converging to a
limit curve or surface nearby, is called an
approximating scheme.

Control surface for Geri’s head
192

How it works

● Example: Chaikin curve subdivision (2D)
● On each edge, insert new control points at ¼ and

¾ between old vertices; delete the old points
● The limit curve is C1 everywhere (despite the poor

figure.)

193

Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will
have twice as many control points as before.
Notice the different treatment of generating odd and
even control points.
Borders (terminal points) are a special case.

←Even

←Odd

194

Notation

Chaikin can be written in vector notation as:

195

Notation
● The standard notation compresses the scheme to a kernel:

● h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of

the matrix form can be used to prove the continuity of the
subdivision limit surface.
● The details of analysis are fascinating, lengthy, and sadly

beyond the scope of this course
● The limit curve of Chaikin is a quadratic B-spline!

196

Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel

197

Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A +

(3/16) B +
(3/16) C +
(1/16) D

This replaces every old vertex
with four new vertices.
The limit surface is biquadratic,
C1 continuous everywhere.

P

A
B

C
D

9

198

Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces

199

Catmull-Clark

● Catmull-Clark is a bivariate approximating
scheme with kernel h=(1/8)[1,4,6,4,1].
● Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge

200

Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule

201

Catmull-Clark in action

202

Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
203

Extraordinary vertices
● Catmull-Clark and Doo-Sabin both

operate on quadrilateral meshes.
● All faces have four boundary edges
● All vertices have four incident edges

● What happens when the mesh contains
extraordinary vertices or faces?
● For many schemes, adaptive weights exist

which can continue to guarantee at least
some (non-zero) degree of continuity, but
not always the best possible.

● CC replaces extraordinary faces with
extraordinary vertices; DS replaces
extraordinary vertices with extraordinary
faces.

Detail of Doo-Sabin at cube
corner

204

Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex
rules generalized for
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in

the one-ring:
3/2n2

● Interleaved neighbors in
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision
Surfaces”, Ignacio Castaño, SIGGRAPH 2008 205

Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts

10

11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)

206

Loop subdivision

Loop subdivision in action. The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html

207

Creases

Extensions exist for most schemes to support
creases, vertices and edges flagged for partial or
hybrid subdivision.

Still from “Volume
Enclosed by
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg,
Ulrich Reif, Scott
Schaefer, Joe Warren
http://vixra.org/pdf/1
406.0060v1.pdf

208

http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf

Continuous level of detail

For live applications (e.g. games) can compute
continuous level of detail, e.g. as a function of
distance:

Level 5 Level 5.2 Level 5.8 209

Direct evaluation of the limit surface

● In the 1999 paper Exact Evaluation Of
Catmull-Clark Subdivision Surfaces at Arbitrary
Parameter Values, Jos Stam (now at
Alias|Wavefront) describes a method for finding
the exact final positions of the CC limit surface.
● His method is based on calculating the tangent and normal

vectors to the limit surface and then shifting the control
points out to their final positions.

● What’s particularly clever is that he gives exact evaluation
at the extraordinary vertices. (Non-trivial.)

210

Bounding boxes and convex hulls for
subdivision surfaces
● The limit surface is (the weighted average of (the weighted

averages of (the weighted averages of (repeat for eternity…))))
the original control points.

● This implies that for any scheme where all weights are positive
and sum to one, the limit surface lies entirely within the
convex hull of the original control points.

● For schemes with negative weights:
● Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter

space of the absolute values of the weights.
● For a scheme with negative weights, L will exceed 1.
● Then the limit surface must lie within the convex hull of the

original control points, expanded unilaterally by a ratio of (L-1).

211

Splitting a subdivision surface
Many algorithms rely on subdividing a surface and
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the
limit surface will change (see right)
● Need to include all control points from the previous

generation, which influence the limit surface in this
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 212

Ray/surface intersection
● To intersect a ray with a subdivision surface,

we recursively split and split again,
discarding all portions of the surface whose
bounding boxes / convex hulls do not lie on
the line of the ray.

● Any subsection of the surface which is ‘close
enough’ to flat is treated as planar and the
ray/plane intersection test is used.

● This is essentially a binary tree search for the
nearest point of intersection.
● You can optimize by sorting your list of

subsurfaces in increasing order of distance
from the origin of the ray.

213

Rendering subdivision surfaces
● The algorithm to render any subdivision surface is exactly the

same as for Bezier curves:
“If the surface is simple enough, render it directly;
otherwise split it and recurse.”

● One fast test for “simple enough” is,
“Is the convex hull of the limit surface
sufficiently close to flat?”

● Caveat: splitting a surface and
subdividing one half but not the
other can lead to tears where
the different resolutions meet. →

214

Figure from Generic Mesh Renement on GPU,
Tamy Boubekeur & Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordeaux, France

Rendering subdivision surfaces on the GPU

● Subdivision algorithms have been ported to the
GPU using geometry (tesselation) shaders.
● This subdivision can be done completely independently of

geometry, imposing no demands on the CPU.
● Uses a complex blend

of precalculated weights
and shader logic

● Impressive effects
in use at id, Valve,
et al

215

Subdivision Schemes—A partial list
● Approximating

● Quadrilateral
● (1/2)[1,2,1]
● (1/4)[1,3,3,1]

(Doo-Sabin)
● (1/8)[1,4,6,4,1]

(Catmull-Clark)
● Mid-Edge

● Triangles
● Loop

● Interpolating
● Quadrilateral

● Kobbelt
● Triangle

● Butterfly
● “√3” Subdivision

Many more exist, some much
more complex
This is a major topic of
ongoing research

216

References
Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary
Topological Meshes.” Computer Aided Design, 1978.
Dyn, N., J. A. Gregory, and D. A. Levin. “Butterfly Subdivision Scheme for
Surface Interpolation with Tension Control.” ACM Transactions on
Graphics. Vol. 9, No. 2 (April 1990): pp. 160–169.
Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using
Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.
Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.”
Ph.D. diss., California Institute of Technology, 1997
Ignacio Castano, “Next-Generation Rendering of Subdivision Surfaces.” Siggraph
’08, http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
Dennis Zorin’s SIGGRAPH course, “Subdivision for Modeling and Animation”,
http://www.mrl.nyu.edu/publications/subdiv-course2000/

217

http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
http://www.mrl.nyu.edu/publications/subdiv-course2000/

Immersion and Presence
in digital realities

218 Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Virtual Reality

219

“Cyberspace. A consensual hallucination experienced
daily by billions of legitimate operators, in every
nation, by children being taught mathematical
concepts... A graphic representation of data abstracted
from banks of every computer in the human system.
Unthinkable complexity. Lines of light ranged in the
nonspace of the mind, clusters and constellations of
data. Like city lights, receding...”

― William Gibson, Neuromancer (1984)

What is… the Matrix?

What is Virtual Reality?

220

Immersion is the art and technology of surrounding
the user with a virtual context, such that there’s
world above, below, and all around them.

Presence is the visceral reaction to a convincing
immersion experience. It’s when immersion is so
good that the body reacts instinctively to the
virtual world as though it’s the real one.

When you turn your head to look up at the attacking
enemy bombers, that’s immersion; when you can’t
stop yourself from ducking as they roar by
overhead, that’s presence.

Top: HTC Vive (Image creduit: Business Insider)
Middle: The Matrix (1999)
Bottom: Google Daydream View (2016)

The “Sword of Damocles” (1968)

221

In 1968, Harvard Professor
Ivan Sutherland, working
with his student Bob Sproull,
invented the world’s first
head-mounted display, or
HMD.

“The right way to think about
computer graphics is that the
screen is a window through which
one looks into a virtual world.
And the challenge is to makes the
world look real, sound real, feel
real and interact realistically.”

-Ivan Sutherland (1965)

Our eyes and brain compute depth cues from many
different signals:

● Binocular vision (“stereopsis”)
The brain merges two images into one with depth
○ Ocular convergence
○ Shadow stereopsis

● Perspective
Distant things are smaller

● Parallax motion and occlusion
Things moving relative to each other, or in front of each other, convey depth

● Texture, lighting and shading
We see less detail far away; shade shows shape; distant objects are fainter

● Relative size and position and connection to the ground
If we know an object’s size we can derive distance, or the reverse; if an
object is grounded, perspective on the ground anchors the object’s distance

Distance and Vision

222Image: Pere Borrell del Caso’s Escapando la Critica (“Escaping Criticism”) (1874)

223

Perspective

Ambient
shadows

Occlusion

Shadows

Image credit: Scott Murray

Murray, Boyaci, Kersten, The
representation of perceived
angular size in human
primary visual cortex, Nature
Neuroscience (2006)

Binocular display

224

Today’s VR headsets work by
presenting similar, but different,
views to each eye

Each eye sees an image of the virtual
scene from that eye’s point of view
in VR

This can be accomplished by rendering
two views to one screen (Playstation
VR, Google Daydream) or two
dedicated displays (Oculus Rift,
HTC Vive)

Top: Davis, Bryla, Benton, Oculus Rift in Action (2014)
Bottom: Oculus DK1 demo scene “Tuscanny”

Teardown of an Oculus Rift CV1

225Teardown of an Oculus Rift CV1 showing details of lenses and displays
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612

https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612

Accounting for lens effects

226Image credit: Davis, Bryla, Benton,
Oculus Rift in Action (2014)

Lenses bend light: the lenses in
the VR headset warp the
image on the screen, creating
a pincushion distortion.

This is countered by first
introducing a barrel
distortion in the GPU shader
used to render the image.

The barrel-distorted image
stretches back to full size
when it’s seen through the
headset lenses.

Accelerometer and electromagnetic sensors in the headset track
the user’s orientation and acceleration. VR software
converts these values to a basis which transforms the scene.

Ex: WebVR API:
interface VRPose {

 readonly attribute Float32Array? position;

 readonly attribute Float32Array? linearVelocity;

 readonly attribute Float32Array? linearAcceleration;

 readonly attribute Float32Array? orientation;

 readonly attribute Float32Array? angularVelocity;

 readonly attribute Float32Array? angularAcceleration;

};

Sensors

227
Top: 6DoF (6 degrees of freedom) - Wikipedia
Bottom: Roll (Z), Pitch (X) and Yaw (Y) - Google Design

https://w3c.github.io/webvr/
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-position
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearacceleration
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-orientation
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularacceleration

Sensor fusion

Problem: Even the best accelerometer can’t detect all
motion. Over a few seconds, position will drift.

Solution: Advanced headsets also track position with
separate hardware on the user’s desk or walls.

● Oculus Rift: “Constellation”, a desk-based IR
camera, tracks a pattern of IR LEDs on the headset

● HTC Vive: “base station” units track user in room
● Playstation VR: LEDs captured by PS camera

The goal is to respond in a handful of milliseconds
to any change in the user’s position or orientation,
to preserve presence.

228Top: Constellation through an IR-enabled camera (image credit: ifixit.com)
Bottom: HTC Vive room setup showing two base stations (image credit: HTC)

http://ifixit.com

Sensors - how fast is fast?

● To preserve presence, the rendered image must respond
to changes in head pose faster than the user can perceive

● That’s believed to be about 20ms, so no HMD can have a
framerate below 50hz

● Most headset display hardware has a higher framerate
○ The Rift CV1 is locked at 90hz
○ Rift software must exceed that framerate
○ Failure to do so causes ‘judder’ as frames are lost
○ Judder leads to nausea, nausea leads to hate, hate leads to the

dark side

229

Dealing with latency: sensor prediction

A key immersion improvement is to predict the future basis.
This allows software to optimize rendering.

● At time t, head pos = X, head velocity = V, head
acceleration = A

● Human heads do not accelerate very fast
● Rendering a single frame takes dt milliseconds
● At t + dt, we can predict pos = X + Vdt + ½ Adt2

● By starting to render the world from the user’s predicted
head position, when rendering is complete, it aligns with
where there head is by then (hopefully).

Ex: The WebVR API returns predicted pose by default

230

Advanced sensor tricks:
detecting when the headset is in use

231

Rift picked up

Rift on head

Rift removed

Rift on desk

Normal use

This graph
shows the
`noise’ of an
Oculus Rift
DK2’s position
when it’s on a
desk or on a
user’s head.

Desk: (approx.)
log(σ) < -10.5

Head:
(approx.)
log(σ) < -4.5

Davis, Bryla, Benton, Pitfalls and Perils of VR: How to Avoid Them (2014)
http://rifty-business.blogspot.co.uk/2014/09/slides-from-our-pax-dev-2014-talk.html

Dealing with latency: ‘timewarp’

Another technique to deal with lost frames
is asynchronous timewarp.

● Headset pose is fetched immediately before frame
display and is used to shift the frame on the display
to compensate for ill-predicted head motion

232Image credit: Davis, Bryla, Benton,
Oculus Rift in Action (2014)

Head velocity,
acceleration captured;
head pose predicted

Rendering
first eye

Begin
frame

Rendering
second
eye

Head pose captured
again to increase
accuracy (second eye)

Final head
pose
capture

Timewarp
shifts
image

Render!

Developing for VR

Dedicated SDKs
● HTC Vive
● Oculus Rift SDK

● C++
● Bindingsfor Python, Java

● Google Daydream SDK
● Android, iOS and Unity

● Playstation VR
● Playstation dev kit

233

General-purpose SDKs
● WebGL - three.js
● WebVR API

Higher-level game
development
● Unity VR

https://www.htcvive.com/us/develop_portal
http://developer.oculus.com
https://developers.google.com/vr/daydream/overview
https://www.playstation.com/en-us/develop/
https://w3c.github.io/webvr/
https://unity3d.com/unity/multiplatform/vr-ar

“Sim sickness”

The Problem:
1. Your body says, “Ah, we’re sitting still.”
2. Your eyes say, “No, we’re moving! It’s exciting!”
3. Your body says, “Woah, my inputs disagree! I must have

eaten some bad mushrooms. Better get rid of them!”
4. Antisocial behavior ensues

The causes of simulation sickness (like motion sickness, but
in reverse) are many. Severity varies between individuals;
underlying causes are poorly understood.

234

Reducing sim sickness

The cardinal rule of VR:

1. Never take head-tracking control away from the user
2. Head-tracking must match the user’s motion
3. Avoid moving the user without direct interaction
4. If you must move the user, do so in a way that doesn’t

break presence

235

The user is in control of the camera.

How can you mitigate sim sickness?

Design your UI to reduce illness
● Never mess with the field of view
● Don’t use head bob
● Don’t knock the user around
● Offer multiple forms of camera control

○ Look direction
○ Mouse + keyboard
○ Gamepad

● Try to match in-world character height
and IPD (inter-pupilary distance) to that
of the user

● Where possible, give the user a stable
in-world reference frame that moves
with them, like a vehicle or cockpit

236

Hawken, by Meteor Entertainment (2014)

Further ways to reduce sim sickness

Design your VR world to reduce illness
● Limit sidestepping, backstepping, turning; never force the user to spin
● If on foot, move at real-world speeds (1.4m/s walk, 3m/s run)
● Don’t use stairs, use ramps
● Design to scale--IPD and character height should match world scale
● Keep the horizon line consistent, static and constant
● Avoid very large moving objects which take up most of the field of view
● Use darker textures
● Avoid flickering, flashing, or high color contrasts
● Don’t put content where they have to roll their eyes to see it
● If possible, build breaks into your VR experience
● If possible, give the user an avatar; if possible, the avatar body should react

to user motion, to give an illusion of proprioception

237

Classic user interfaces in 3D

Many classic UI paradigms
will not work if you
recreate them in VR

● UI locked to sides or corners of
the screen will be distorted by
lenses and harder to see

● Side and corner positions force
the user to roll their eyes

● Floating 3D dialogs create a
virtual plane within a virtual
world, breaking presence

● Modal dialogs ‘pause’ the world
● Small text is much harder to read

in VR

238Top: EVE Online (2003)
Bottom: Team Fortress (2007)

In-world UIs are evolving

Deus Ex Human Revolution (2011) Deus Ex Mankind Divided (2016)

239

Increasingly, UI elements are being integrated into the virtual world

The best virtual UI is in-world UI

Top left: Call of Duty: Black Ops (2010) Top right: Halo 4 (2012)
Bottom left: Crysis 3 (2013) Bottom right: Batman: Arkham Knight (2015) 240

241Strike Suit Zero (2013)

http://www.youtube.com/watch?v=FYvpo_PDu4w

242Elite: Dangerous (2014)

http://www.youtube.com/watch?v=-ZvjH430C_o

Storytelling in games

The visual language of games is often
the language of movies

● Cutscenes
● Angle / reverse-angle

conversations
● Voiceover narration
● Pans
● Dissolves
● Zooms...

In VR, storytelling by moving the
camera will not work well because
the user is the camera.

243

"It's a new communications medium. What is necessary is to
develop a grammar and syntax. It's like film. When film was
invented, no one knew how to use it. But gradually, a visual
grammar was developed. Filmgoers began to understand how
the grammar was used to communicate certain things. We have
to do the same thing with this.“

Neal Stephenson, Interface, 1994

Call of Duty: Modern Warfare 3 (2012)
The player’s helicopter has been shot down; they emerge into
gameplay, transitioning smoothly from passive to active.

In-game video content

Your virtual world may have screens of its own. If it does, use them: they’re
perfect for prerecorded 2D content.

244

Drawing the user’s attention
When presenting dramatic content in

VR, you risk the user looking
away at a key moment.

● Use audio cues, movement or
changing lighting or color to
draw focus

● Use other characters in the
scene; when they all turn to look
at something, the player will too

● Design the scene to direct the
eye

● Remember that in VR, you know
when key content is in the
viewing frustum

245

 The Emperor’s New Groove (2000)

User

V
ie

w
in

g
d

ir
ec

ti
o

n

Vie
win

g d
ire

ct
io

n
Viewing direction

Animate!

Advice for a good UI
Always display relevant state—Primary application state

should be visible to the user. For an FPS shoot-em-up,
this means showing variables like ammo count and
health. Combine audio and video for key cues such as
player injury.

Use familiar context and imagery—Don’t make your users
learn specialized terms so they can use your app. If
you’re writing a surgery interface for medical training,
don’t force medical students to learn about virtual
cameras and FOVs.

Support undo/redo—Don’t penalize your users for clicking
the wrong thing. Make undoing recent actions a primary
user interface mode whenever feasible.

Design to prevent error—If you want users to enter a value
between 1 and 10 in a box, don’t ask them to type; they
could type 42. Give them a slider instead.

Build shortcuts for expert users—The feeling that you’re
becoming an expert in a system often comes from
learning its shortcuts. Make sure that you offer combos
and shortcuts that your users can learn—but don’t
require them.

Don’t require expert understanding—Visually indicate
when an action can be performed, and provide useful
data if the action will need context. If a jet fighter pilot
can drop a bomb, then somewhere on the UI should be a
little indicator of the number of bombs remaining. That
tells players that bombs are an option and how many
they’ve got. If it takes a key press to drop the bomb,
show that key on the UI.

Keep it simple—Don’t overwhelm your users with useless
information; don’t compete with yourself for space on
the screen. Always keep your UI simple. “If you can’t
explain it to a six-year-old, you don’t understand it
yourself” (attributed to Albert Einstein).

Make error messages meaningful—Don’t force users to
look up arcane error codes. If something goes wrong,
take the time to clearly say what, and more important,
what the user should do about it.

Abridged from Usability Engineering by Jakob Nielsen
(Morgan Kaufmann, 1993)

246

An unhelpful error message

Gesticular interfaces

Hollywood has been training us
for a while now to use
gesticular user interfaces.

A gesticular interface uses
pre-set, intuitive hand and
body gestures to control virtual
representations of material
data.

Many hand position capture
devices are in development.

247

248Johnny Mnemonic (1995)

http://www.youtube.com/watch?v=l0dYS2AKBN8

249Marvel’s Agents of S.H.I.E.L.D. (2013) S01 E13

http://www.youtube.com/watch?v=Gyfq0QBhPs4

References
Developing in VR

● Fundamentals of Computer Graphics, by P. Shirley, M. Ashikhmin, and S. Marschner (A. K. Peters/CRC Press, 2009)
● Computer Graphics: Principles and Practice, by J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes (Addison-Wesley Professional, 2013)
● Oculus Rift in Action, by Davis, Bryla and Benton (2014)
● Oculus Best Practices Guide - developer.oculus.com/documentation

Motion sickness/simulator sickness

● Textbook of Maritime Medicine, by the Norwegian Centre for Maritime Medicine (2013). See chapter 20, “Motion Sickness” (textbook.ncmm.no)
● Validating an Efficient Method to Quantify Motion Sickness, by B. Keshavarz and H. Hecht (2011). Human Factors: The Journal of the Human Factors

and Ergonomics Society 53.4: 415–26.
● Simulator Sickness Questionnaire, by R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal (1993). The International Journal of Aviation

Psychology 3(3): 203–20.
● Motion Sickness Susceptibility Questionnaire Revised and Its Relationship to Other Forms of Sickness, by J. F. Golding (1998). Brain Research Bulletin,

47(5): 507–16.

UI design for VR

● 3D User Interfaces: New Directions and Perspectives, by D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose…and W. Stuerzlinger. (2008).  IEEE
Computer Graphics and Applications 28(6): 20–36.

● Design and Evaluation of Mouse Cursors in a Stereoscopic Desktop Environment, by L. Schemali and E. Eisemann (2014). 3D User Interfaces (3DUI),
2014 IEEE Symposium (pp. 67-70). IEEE. Recorded talk is available at vimeo.com/91489021

● Developing Virtual Reality Games and Experiences— www.gdcvault.com/play/1020714. Presented at GDC 2014.
● Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction Techniques, by I. Poupyrev, S. Weghorst, M. Billinghurst,

and T. Ichikawa (1998). Computer Graphics Forum, 17(3): 41–52.
● Kinect Hand Detection, by G. Gallagher—video.mit.edu/watch/kinect-hand-detection-12073
● Make It So: Interaction Design Lessons from Science Fiction, by N. Shedroff and C. Noessel (Rosenfeld Media, 2012)
● Lessons learned porting Team Fortress 2 to virtual reality—media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
● Pointing at 3D Target Projections with One-Eyed and Stereo Cursors, by R. J. Teather and W. Stuerzlinger. (2013). ACM Conference on Human

Factors in Computing Systems: 159–68.
● Pointing to the future of UI, by J. Underkoffler (2010). Talk given at TED. www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture
● Selection Using a One-Eyed Cursor in a Fish Tank VR Environment, by C. Ware and K. Lowther.  (1997). ACM

Transactions on Computer-Human Interaction Journal, 4(4): 309–22.
● Usability Engineering, by J. Nielsen (Morgan Kaufmann, 1993)

250

http://developer.oculus.com/documentation
http://textbook.ncmm.no/
http://vimeo.com/91489021
http://www.gdcvault.com/play/1020714
http://video.mit.edu/watch/kinect-hand-detection-12073
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture

