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“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age 
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one 

trillion rays w
ere traced in the generation of this im

age. 

Ray Tracing
All the maths
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Ray tracing

● A powerful alternative to polygon scan-conversion techniques
● An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the 
center of every pixel and see what it hits.
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The algorithm
Select an eye point and a screen plane.
for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.
for (each object in the scene):

if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.
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Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s 

sc
ul

pt
ur

e"
 b

y 
Tr

ev
or

 G
. Q

ua
yl

e 
(2

00
8)

"POV Planet" by Casey Uhrig (2004) 

4

http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/


The basic algorithm is 
straightforward, but there's 
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit 

on the back of his business card.  (circa 1983)

It doesn’t take much code
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The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x 
(num objects in scene) x
(num reflective surfaces) x
(num transparent surfaces) x
(num shadow rays) x
(ray reflection depth) x …

Contrast this to polygon rasterization: time is a function of the 
number of elements in the scene times the number of lights.

Image by nVidia

Running time
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Once you have the point P (the intersection of the ray with 
the nearest object) you’ll compute how much each of the 
lights in the scene illuminates P.
diffuse = 0
specular = 0
for (each light Li in the scene):

if (N•L) > 0:
[Optionally: if (a ray from P to Li can reach Li):]

diffuse += kD(N•L)
specular += kS(R•E)n

intensity at P = ambient + diffuse + specular

E

L1

P

L2

L3

N

Ray-traced illumination
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A ray is defined parametrically as
P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the 
ray’s direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z:
x(t) = xE + txD
y(t) = yE + tyD         t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays
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Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation
x2 + y2 + z2 = 1 (γ)

Substituting equation (β) into (γ) gives
(xE+txD)2 + (yE+tyD)2 + (zE+tzD)2 = 1

which expands to
t2(xD

2+yD
2+zD

2) + t(2xExD+2yEyD+2zEzD) + (xE
2+yE

2+zE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t:

...giving us two points of intersection.

9



A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0 (ζ)

Substituting equation (α) into (ζ) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv1) + yN(yE+tyD-yv1) + zN(zE+tzD-zv1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons
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Half-planes method
● Each edge defines an infinite half-plane 

covering the polygon.  If the point P lies 
in all of the half-planes then it must be in 
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…
v…

vn

vi

vi+1

P

eeR

Point in convex polygon
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Barycentric coordinates (tA,tB,tC) are a 
coordinate system for describing the location of 
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’ 

placed at (A,B,C) respectively so that the 
center of gravity of the triangle lies at P.

● (tA,tB,tC) are also proportional to the 
subtriangle areas.
○ The area of a triangle is ½ the length of the cross 

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates
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Barycentric coordinates

13

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
vec3 barycentric(vec3 p, vec3 a, vec3 b, vec3 c) {
  vec3 v0 = b - a, v1 = c - a, v2 = p - a;
  float d00 = dot(v0, v0);
  float d01 = dot(v0, v1);
  float d11 = dot(v1, v1);
  float d20 = dot(v2, v0);
  float d21 = dot(v2, v1);
  float denom = d00 * d11 - d01 * d01;
  float v = (d11 * d20 - d01 * d21) / denom;
  float w = (d00 * d21 - d01 * d20) / denom;
  float u = 1.0 - v - w;
  return vec3(u, v, w);
}

Code credit: Christer Ericson, Real-Time Collision Detection (2004)
(adapted to GLSL for this lecture)



Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of 
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling 
transforms and just project along any axis by ignoring (for 
example) the Z component.  

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon
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“Any simple closed curve C divides the points of the 
plane not on C into two distinct domains (with no 
points in common) of which C is the common 
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838 

-1922) in his Cours d'Analyse.  
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A 
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B 
must cross C.

A
B

C

The Jordan curve theorem
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Note that the Jordan curve theorem can be extended to 
a curve on a sphere, or anything which is topologically 
equivalent to a sphere.
“Any simple closed curve on a sphere separates the 

surface of the sphere into two distinct regions.”

A

B

The Jordan curve theorem on a sphere
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Local coordinates, world coordinates

The cylinder “as it sees 
itself”, in local coordinates

The cylinder “as the world sees it”, in world coordinates

5 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

* =

A 4x4 scale matrix, which 
multiplies x and z by 5, y by 2.

A very common technique in graphics is to associate a 
local-to-world transform, T, with a primitive.

17



Local coordinates, world coordinates:
Transforming the ray

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

E

T-1E

In order to test whether a ray hits a transformed object, 
we need to describe the ray in the object’s local 
coordinates.  We transform the ray by the inverse of 
the local to world matrix, T-1.

If the ray is defined by 
P(t) = E + tD

then the ray in local coordinates is defined by
T-1(P(t)) = T-1(E) + t(T-13x3D)

where T-13x3 is the top left 3x3 submatrix of T-1.
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Finding the normal

We often need to know N, the normal to the surface at the 
point where a ray hits a primitive.

● If the ray R hits the primitive P at point X then N is…

We use the normal for color, reflection, refraction, shadow rays...

Primitive type Equation for N

Unit Sphere centered at the origin N = X

Infinite Unit Cylinder centered at the origin N = [ xX, yX, 0 ]

Infinite Double Cone centered at the origin N = X  × (X × [ 0, 0, zX ])

Plane with normal n N = n

19



local

world

T

NL

NW

Converting the normal from local to world 
coordinates

To find the world-coordinates normal N from the 
local-coordinates NL, multiply NL by the transpose 
of the inverse of the top left-hand 3x3 submatrix of 
T:

N=((T3x3)
-1)T NL

● We want the top left 3x3 to discard translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c) 

becomes (1/a,1/b,1/c) when inverted
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Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object 
transformed by local-to-world transform T:
1. Compute R’, the ray R in local coordinates, as 

P’(t) = T-1(P(t)) = T-1(E) + t(T-13x3(D))

2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to 

world coordinates by multiplying them by T.
4. Convert all hit normals from local coordinates back to 

world coordinates by multiplying them by ((T3x3)-1)T.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed 
primitive objects.
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Your scene graph and you
Many 2D GUIs today favor an event model in which events ‘bubble up’ 

from child windows to parents.  This is sometimes mirrored in a scene 
graph.

● Ex: a child changes size, changing the size of the parent’s bounding box
● Ex: the user drags a movable control in the scene, triggering an update event

If you do choose this approach, consider using the Model View Controller 
or Model View Presenter design pattern.  3D geometry objects are 
good for displaying data but they are not the proper place for control 
logic.

● For example, the class that stores the geometry of the rocket should not be the 
same class that stores the logic that moves the rocket.

● Always separate logic from representation.

22



Great for…
● Collision detection between 

scene elements
● Culling before rendering
● Accelerating ray-tracing

Your scene graph and you
A common optimization derived 

from the scene graph is the 
propagation of bounding 
volumes.

Nested bounding volumes allow 
the rapid culling of large 
portions of geometry

● Test against the bounding 
volume of the top of the scene 
graph and then work down.

23



Speed up ray-tracing with bounding 
volumes
Bounding volumes help to quickly accelerate volumetric tests, 
such as “does the ray hit the cow?”
● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight
Axis-aligned bounding boxes
● max and min of x/y/z.
Bounding spheres
● max of radius from some rough center
Bounding cylinders 
● common in early FPS games

24



Bounding volumes in hierarchy

Hierarchies of bounding 
volumes allow early discarding 
of rays that won’t hit large 
parts of the scene.
● Pro: Rays can skip 

subsections of the hierarchy

● Con: Without spatial 
coherence ordering the 
objects in a volume you hit, 
you’ll still have to hit-test 
every object

25



Subdivision of space

Split space into cells and list 
in each cell every object in 
the scene that overlaps that 
cell.
● Pro: The ray can skip empty 

cells

● Con: Depending on cell size, 
objects may overlap many 
filled cells or you may waste 
memory on many empty 
cells

26



The BSP tree partitions the scene into 
objects in front of, on, and behind a 
tree of planes.
● When you fire a ray into the scene, you test 

all near-side objects before testing far-side 
objects.

Problems: 
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on 

floating-point math.

A

B

C

E

F
D

Popular acceleration structures:
BSP Trees

27



Popular acceleration structures:
kd-trees

The kd-tree is a simplification of the 
BSP Tree data structure 
● Space is recursively subdivided by 

axis-aligned planes and points on either side 
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time 
(but this is very optimizable by domain 
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical 
slowdowns of BSPs because their planes are 
always axis-aligned.

Image from Wikipedia, bless their hearts.
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Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume 
to remove unused space.
● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval 
Hierarchy, Eurographics (2006)

29
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Ray Tracing:
Image Quality and Texture

Alex Benton, University of Cambridge –

alex@bentonian.com

Supported in part by Google UK, Ltd 31



Shadows

To simulate shadows in ray tracing, fire a ray 
from P towards each light Li.  If the ray hits 
another object before the light, then discard Li 
in the sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.
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Softer shadows

Shadows in nature are not sharp because light sources are not 
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration: 

a coarse simulation of an integral over a space 
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.
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Softer shadows
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L

S

Raytraced spotlights

D

To create a spotlight shining along axis S, you 
can multiply the (diffuse+specular) term by 
(max(L•S,0))m.  
● Raising m will tighten the spotlight,

but leave the edges soft.
● If you’d prefer a hard-edged spotlight

of uniform internal intensity, you can 
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).
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Reflection

Reflection rays are calculated as:
R = 2(-D•N)N+D

● Finding the reflected color is a 
recursive raycast.

● Reflection has scene-dependant 
performance impact.

● If you’re using the GPU, GLSL supports 
reflect() as a built-in function.

D
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num bounces=1

num bounces=0 num bounces=2

num bounces=3 37



E D
DT

Transparency

To add transparency, generate and trace a new 
transparency ray with ET=P, DT=D.

To support this in software, make color a 1x4 vector 
where the fourth component, ‘alpha’, 
determines the weight of the recursed 
transparency ray.
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1 Or sound waves or other waves

Refraction

The angle of incidence of a ray of light where it 
strikes a surface is the acute angle between the 
ray and the surface normal.
The refractive index of a material is a measure 
of how much the speed of light1 is reduced 
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

39



Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of 
light at the interface between two materials is equal to the 
inverse ratio of the refractive indices of the materials is equal 
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord 
Snell (1591-1626) and René Descartes (1596-1650) but first 
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction

40



Refraction in ray tracing

Using Snell’s Law and the angle of 
incidence of the incoming ray, we 
can calculate the angle from the 
negative normal to the outbound 
ray.

E
D

P

P’

N
θ1

θ2

41



Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in 

[-1,1].
● We call this the angle of total 

internal reflection: light is trapped 
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal 
reflection
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Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency, 
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that 
curved or inclined lines appear 
inappropriately jagged, caused by the 
mapping of a number of points to the same 
pixel.
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Aliasing

-

=
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Anti-aliasing

Fundamentally, the problem with aliasing is that we’re sampling an infinitely 
continuous function (the color of the scene) with a finite, discrete function (the 
pixels of the image).

One solution to this is super-sampling.  If we fire multiple rays through each 
pixel, we can average the colors 
computed for every ray together 
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

45Lecture note: Four printed slides removed here, 
reviewing antialiasing from last year’s notes.

http://www.svi.nl/


Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit: 
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 46
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Texture mapping

As observed in last year’s course, real-life objects rarely 
consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a 
surface, like a decal.  Coordinates on the surface are 
mapped to coordinates in the texture.
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Texture mapping

0, 0

0, 1 1, 1

1, 0

We’ll need to query the color of the 
texture at the point in 3D space where 
the ray hits our surface.  This is 
typically done by mapping

  (3D point in local coordinates)
  → U,V coordinates bounded [0-1, 0-1]
  → Texture coordinates bounded by

[image width, image height]

48



UV mapping the primitives

UV mapping of a unit cube
if |x| == 1:
  u = (z + 1) / 2
  v = (y + 1) / 2
elif |y| == 1:
  u = (x + 1) / 2
  v = (z + 1) / 2
else:
  u = (x + 1) / 2
  v = (y + 1) / 2

UV mapping of a torus of 
major radius R

  u = 0.5 + atan2(z, x) / 2π
  v = 0.5 + atan2(y, ((x2 + z2)½ - R) / 2π

UV mapping of a unit sphere
  u = 0.5 + atan2(z, x) / 2π
  v = 0.5 - asin(y) / π

UV mapping is easy for primitives but can be very difficult for arbitrary shapes.
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Texture mapping

One constraint on using images for texture is that images 
have a finite resolution, and a virtual (ray-traced) camera 
can get quite near to the surface of an object.

This can lead to a 
single image pixel 
covering multiple 
ray-traced pixels (or 
vice-versa), leading to 
blurry or aliased pixels 
in your texture.
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Procedural texture

Instead of relying on discrete 
pixels, you can get infinitely 
more precise results with 
procedurally generated textures. 

Procedural textures compute the 
color directly from the U,V 
coordinate without an image 
lookup.

For example, here’s the code for 
the torus’ brick pattern (right):

  tx = (int) 10 * u

  ty = (int) 10 * v
  oddity = (tx & 0x01) == (ty & 0x01)
  edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
  return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u 
coordinate by 4 to repeat the brick texture 
four times around the torus.
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Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping 
to the surface normal instead of surface color.

In a sense, the ray tracer 
computes a trompe-l’oeuil 
image on the fly and 
‘paints’ the surface with 
more detail than is actually 
present in the geometry.

The specular and diffuse shading of the 
surface varies with the normals in a 
dent on the surface.

If we duplicate the normals, we don’t 
have to duplicate the dent.
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Non-color textures: normal mapping
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Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently 
in one direction from another, as a function of the surface itself.  The specular 
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/ 54
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Procedural volumetric texture

By mapping 3D coordinates to colors, we can create 
volumetric texture.  The input to the texture is local model 
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow 
rings, with darker wood from earlier in the year and 
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood + 
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 55



Adding realism

The teapot on the previous slide doesn’t look very wooden, 
because it’s perfectly uniform.  One way to make the 
surface look more natural is to add a randomized noise 
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in 
space to scalar values chosen at random.

For natural-looking results, use 
Perlin noise, which interpolates 
smoothly between noise values.
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Perlin noise

Perlin noise (invented by Ken Perlin) is a method for 
generating noise which has some useful traits:

● It is a band-limited repeatable pseudorandom 
function (in the words of its author, Ken Perlin)

● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended 

arbitrarily in space, yet cached deterministically
● Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 57
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Perlin noise 1

Perlin noise caches ‘seed’ random values on a grid at 
integer intervals.  You’ll look up noise values at 
arbitrary points in the plane, and they’ll be 
determined by the four nearest seed randoms on 
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in 
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)} 
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html58

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html


Perlin noise 2

For each of the four corners, take the dot product of the 
random seed vector with the vector from that corner to 
(x, y).  This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values 
of the dot products will change smoothly, with no 
discontinuity.

● As (x, y) approaches a grid point, the contribution from 
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range 
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)
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Perlin noise 3

Now we take a weighted average of LL, LR, UL, UR.  
Perlin noise uses a weighted averaging function chosen 
such that values close to zero and one are moved closer 
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =
 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))

Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’
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Tuning noise 

Texture frequency
1 → 3

Noise frequency
1 → 3

Noise amplitude
1 → 3 61

http://www.youtube.com/watch?v=H4Xll-x2vL0
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3D technologies today
Java
● Common, re-usable language; 

well-designed
● Steadily increasing popularity in 

industry
● Weak but evolving 3D support

C++
● Long-established language
● Long history with OpenGL
● Long history with DirectX
● Losing popularity in some fields 

(finance, web) but still strong in 
others (games, medical)

JavaScript
● WebGL is surprisingly popular

OpenGL
● Open source with many 

implementations
● Well-designed, old, and still evolving
● Fairly cross-platform

DirectX/Direct3d (Microsoft)
● Microsoft™ only
● Dependable updates

Mantle (AMD)
● Targeted at game developers
● AMD-specific

Higher-level commercial libraries
● RenderMan
● AutoDesk / SoftImage
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OpenGL
OpenGL is…
● Hardware-independent
● Operating system independent
● Vendor neutral

On many platforms
● Great support on Windows, Mac, 

linux, etc
● Support for mobile devices with 

OpenGL ES
● Android, iOS (but not 

Windows Phone)
● Android Wear watches!

● Web support with WebGL

A state-based renderer
● many settings are configured 

before passing in data; rendering 
behavior is modified by existing 
state

Accelerates common 3D graphics 
operations
● Clipping (for primitives)
● Hidden-surface removal 

(Z-buffering)
● Texturing, alpha blending 

NURBS and other advanced 
primitives (GLUT)
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Mobile GPUs

● OpenGL ES 1.0-3.2
● A stripped-down version 

of OpenGL
● Removes functionality 

that is not strictly 
necessary on mobile 
devices (like recursion!)

● Devices
● iOS: iPad, iPhone, iPod 

Touch
● Android phones
● PlayStation 3, Nintendo 

3DS, and more

OpenGL ES 2.0 rendering (iOS)
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WebGL

● JavaScript library for 3D 
rendering in a web browser
● Based on OpenGL ES 2.0
● Many supporting JS libraries
● Even gwt, angular, dart...

● Most modern browsers 
support WebGL, even mobile 
browsers
● Enables in-browser 3D games
● Enables realtime 

experimentation with glsl 
shader code

Samples from Shadertoy.com
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Vulkan

Vulkan is the next generation of 
OpenGL: a cross-platform open 
standard aimed at pure performance
on modern hardware

Compared to OpenGL, Vulkan--
● Reduces CPU load
● Has better support of multi-CPU

core architectures
● Gives finer control of the GPU
--but--
● Drawing a few primitives can take 1000s of lines of code
● Intended for game engines and code that must be very well optimized

The Talos Principle running on Vulkan (via www.geforce.com)

68



OpenGL in Java - choices
JOGL:  “Java bindings for 
OpenGL”
jogamp.org/jogl
JOGL apps can be deployed as 
applications or as applets, making it 
suitable for educational web demos 
and cross-platform applications.
● If the user has installed the latest 

Java, of course.
● And if you jump through 

Oracle’s authentication hoops.
● And… let’s be honest, 1998 

called, it wants its applets back.

JOGL shaders in action.  
Image from Wikipedia

LWJGL: “Lightweight 
Java Games Library”
www.lwjgl.org
LWJGL is targeted at game 
developers, so it’s got a solid 
threading model and good support for 
new input methods like joysticks, 
gaming mice,
and the Oculus
Rift.
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The CPU (your processor and friend) delivers data to the GPU 
(Graphical Processing Unit).
● The GPU takes in streams of vertices, colors, texture coordinates and 

other data; constructs polygons and other primitives; then uses 
shaders to draw the primitives to the screen pixel-by-pixel.

● The GPU processes the vertices according to the state set by the 
CPU; for example, “every trio of vertices describes a triangle”.

This process is called the rendering pipeline.  Implementing the rendering 
pipeline is a joint effort between you and the GPU.

You’ll write shaders in the OpenGL shader language, GLSL.
You’ll write vertex and fragment shaders.  (And maybe others.)

OpenGL architecture
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The OpenGL rendering pipeline

An OpenGL application assembles 
sets of primitives, transforms and 
image data, which it passes to 
OpenGL’s GLSL shaders.
● Vertex shaders process every vertex 

in the primitives, computing info 
such as position of each one.

● Fragment shaders compute the 
color of every fragment of every 
pixel covered by every primitive.

Primitives and image data

Alpha, stencil, depth tests
Framebuffer blending

Transform and lighting

Primitive assembly

Clipping

Texturing

Fog, antialiasing

Application

Vertex

Geometry

Fragment

Framebuffer

The OpenGL rendering pipeline 
(a massively simplified view)
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Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and ATI (bottom)
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OpenGL: Shaders

OpenGL shaders give the 
user control over each 
vertex and each fragment 
(each pixel or partial 
pixel) interpolated 
between vertices.
After vertices are processed, polygons are rasterized.  During 
rasterization, values like position, color, depth, and others are 
interpolated across the polygon.  The interpolated values are 
passed to each pixel fragment.
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Think parallel

Shaders are compiled from within your code
● They used to be written in assembler
● Today they’re written in high-level languages
● Vulkan’s SPIR-V lets developers code in high-level GLSL but 

tune at the machine code level

GPUs typically have multiple processing units
That means that multiple shaders execute in parallel
● We’re moving away from the purely-linear flow of early “C” 

programming models
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Shader example one – ambient lighting
#version 330

uniform mat4 mvp;

in vec4 vPos;

void main() {
  gl_Position = mvp * vPos;
}

#version 330

out vec4 fragmentColor;

void main() {
  fragmentColor =
      vec4(0.2, 0.6, 0.8, 1);
}

// Vertex Shader // Fragment Shader
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Vertex outputs become fragment inputs
#version 330

uniform mat4 mvp;

in vec4 vPos;
out vec3 c;

void main() {
  gl_Position = mvp * vPos;
}

#version 330

in vec3 c;
out vec4 fragmentColor;

void main() {
  fragmentColor = vec4(c, 1);
}

Input

Output

Color 
output

Input

interpolation
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Program

OpenGL / GLSL API - setup
To install and use a shader in OpenGL:
1. Create one or more empty shader objects with 

glCreateShader.
2. Load source code, in text, into the shader with 

glShaderSource.
3. Compile the shader with 

glCompileShader.
4. Create an empty program object with 

glCreateProgram.
5. Bind your shaders to the program with 

glAttachShader.
6. Link the program (ahh, the ghost of C!) with 

glLinkProgram.
7. Activate your program with 

glUseProgram.

Vertex
shader

Fragment
shader

Compiler

OpenGL

Linker
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Shader gallery II

Above: Kevin Boulanger (PhD thesis, 
“Real-Time Realistic Rendering of Nature 
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)
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What will you have to write?

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU
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Geometry in OpenGL

The atomic datum of 
OpenGL is a vertex.
● 2d or 3d
● Specify arbitrary details

The fundamental primitives 
in OpenGL are the line 
segment and triangle.
● Very hard to get wrong
● {vertices} + {ordering} 

= surface
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Geometry in OpenGL

Vertex buffer objects store arrays of vertex 
data--positional or descriptive.  With a vertex 
buffer object (“VBO”) you can compute all 
vertices at once, pack them into a VBO, and 
pass them to OpenGL en masse to let the GPU 
processes all the vertices together.

To group different kinds of vertex data together, 
you can serialize your buffers into a single 
VBO, or you can bind and attach them to 
Vertex Array Objects.  Each vertex array 
object (“VAO”) can contain multiple VBOs. 

Although not required, VAOs help you to 
organize and isolate the data in your VBOs.

Vertex Array 
Object

Vertex Buffer 
(positions)

Vertex Buffer 
(colors)

Vertex Buffer 
(normals)

Vertex Buffer 
(texture info)
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HelloGL.java [1/4]
    ///////////////////////////////////////////////////////////////////////////
    // Set up GLFW window

    GLFWErrorCallback errorCallback = GLFWErrorCallback.createPrint(System.err);
    GLFW.glfwSetErrorCallback(errorCallback);
    GLFW.glfwInit();
    GLFW.glfwWindowHint(GLFW.GLFW_CONTEXT_VERSION_MAJOR, 3);
    GLFW.glfwWindowHint(GLFW.GLFW_CONTEXT_VERSION_MINOR, 3);
    GLFW.glfwWindowHint(GLFW.GLFW_OPENGL_PROFILE, GLFW.GLFW_OPENGL_CORE_PROFILE);
    GLFW.glfwWindowHint(
        GLFW.GLFW_OPENGL_FORWARD_COMPAT, GLFW.GLFW_TRUE);
    long window = GLFW.glfwCreateWindow(
        800 /* width */, 600 /* height */, "HelloGL", 0, 0);
    GLFW.glfwMakeContextCurrent(window);
    GLFW.glfwSwapInterval(1);
    GLFW.glfwShowWindow(window);

    ///////////////////////////////////////////////////////////////////////////
    // Set up OpenGL

    GL.createCapabilities();
    GL11.glClearColor(0.2f, 0.4f, 0.6f, 0.0f);
    GL11.glClearDepth(1.0f);

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics82
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HelloGL.java [2/4]
    //////////////////////////////////
    // Set up minimal shader programs

    // Vertex shader source
    String[] vertex_shader = {
      "#version 330\n",
      "in vec3 v;",
      "void main() {",
      "  gl_Position = ",
      "      vec4(v, 1.0);",
      "}"
    };

    // Fragment shader source
    String[] fragment_shader = {
        "#version 330\n",
        "out vec4 frag_colour;",
        "void main() {",
        "  frag_colour = ",
        "      vec4(1.0);",
        "}"
    };

    // Compile vertex shader
    int vs = GL20.glCreateShader(
        GL20.GL_VERTEX_SHADER);
    GL20.glShaderSource(
        vs, vertex_shader);
    GL20.glCompileShader(vs);
    
    // Compile fragment shader
    int fs = GL20.glCreateShader(
        GL20.GL_FRAGMENT_SHADER);
    GL20.glShaderSource(
        fs, fragment_shader);
    GL20.glCompileShader(fs);
    
    // Link vertex and fragment
    // shaders into active program
    int program = 
        GL20.glCreateProgram();
    GL20.glAttachShader(program, vs);
    GL20.glAttachShader(program, fs);
    GL20.glLinkProgram(program);
    GL20.glUseProgram(program);
    

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics83

https://github.com/AlexBenton/AdvancedGraphics


HelloGL.java [3/4]
///////////////////////////////////////////////////////////////////////////
// Set up data

// Fill a Java FloatBuffer object with memory-friendly floats
float[] coords = new float[] { -0.5f, -0.5f, 0,  0, 0.5f, 0,  0.5f, -0.5f, 0 };
FloatBuffer fbo = BufferUtils.createFloatBuffer(coords.length);
fbo.put(coords);                                // Copy the vertex coords into the 
floatbuffer
fbo.flip();                                     // Mark the floatbuffer ready for reads

// Store the FloatBuffer's contents in a Vertex Buffer Object
int vbo = GL15.glGenBuffers();                  // Get an OGL name for the VBO
GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vbo);   // Activate the VBO
GL15.glBufferData(GL15.GL_ARRAY_BUFFER, fbo, GL15.GL_STATIC_DRAW);  // Send VBO data to GPU

// Bind the VBO in a Vertex Array Object
int vao = GL30.glGenVertexArrays();             // Get an OGL name for the VAO
GL30.glBindVertexArray(vao);                    // Activate the VAO
GL20.glEnableVertexAttribArray(0);              // Enable the VAO's first attribute (0)
GL20.glVertexAttribPointer(0, 3, GL11.GL_FLOAT, false, 0, 0);  // Link VBO to VAO attrib 0

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics84
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HelloGL.java [4/4]
    ///////////////////////////////////////////////////////////////////////////
    // Loop until window is closed

    while (!GLFW.glfwWindowShouldClose(window)) {
      GLFW.glfwPollEvents();

      GL11.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT);
      GL30.glBindVertexArray(vao);
      GL11.glDrawArrays(GL11.GL_TRIANGLES, 0 /* start */, 3 /* num vertices */);

      GLFW.glfwSwapBuffers(window);
    }

    ///////////////////////////////////////////////////////////////////////////
    // Clean up

    GL15.glDeleteBuffers(vbo);
    GL30.glDeleteVertexArrays(vao);
    GLFW.glfwDestroyWindow(window);
    GLFW.glfwTerminate();
    GLFW.glfwSetErrorCallback(null).free();

“HelloGL.java” - github.com/AlexBenton/AdvancedGraphics85
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Binding multiple buffers in a VAO

Need more info?  We can pass more than just coordinate data--we can create as 
many buffer objects as we want for different types of per-vertex data.  This 
lets us bind vertices with normals, colors, texture coordinates, etc...

Here we bind a vertex buffer object for position data and another for normals:
int vao = glGenVertexArrays();
glBindVertexArray(vao);
GL20.glEnableVertexAttribArray(0);
GL20.glEnableVertexAttribArray(1);
GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vbo_0);
GL20.glVertexAttribPointer( 0, 3, GL11.GL_FLOAT, false, 0, 0);
GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vbo_1);
GL20.glVertexAttribPointer( 1, 3, GL11.GL_FLOAT, false, 0, 0);

Later, to render, we work only with the vertex array:
glBindVertexArray(vao);
glDrawArrays(GL_LINE_STRIP, 0, data.length);

Caution--all VBOs in a VAO must describe the same number of vertices!
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Accessing named GLSL attributes from Java
// Vertex shader
// … 

#version 330

in vec3 v;
void main() {
  gl_Position = 
      vec4(v, 1.0);
}

// … 

The HelloGL sample code hardcodes the 
assumption that the vertex shader input field 
‘v’ is the zeroeth input (position 0).

That’s unstable: never rely on a fixed ordering.
Instead, fetch the attrib location:
int vLoc =
GL20.glGetAttribLocation(program, "v");

GL20.glEnableVertexAttribArray( vLoc);
GL20.glVertexAttribPointer( vLoc,
    3, GL_FLOAT, false, 0, 0);

This enables greater flexibility and Java code 
that can adapt to dynamically-changing 
vertex and fragment shaders.

// … 

glEnableVertexAttribArray(0);
glVertexAttribPointer(0,
    3, GL_FLOAT, false, 0, 0);

// … 
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You configure how OpenGL interprets the vertex buffer.  Vertices can be 
interpreted directly, or indexed with a separate integer indexing buffer.  By 
re-using vertices and choosing ordering / indexing carefully, you can reduce 
the number of raw floats sent from the CPU to the GPU dramatically.

Options include line primitives--
● GL_LINES
● GL_LINE_STRIP
● GL_LINE_LOOP

--triangle primitives--
● GL_TRIANGLES
● GL_TRIANGLE_STRIP
● GL_TRIANGLE_FAN

--and more.  OpenGL also offers
backface culling and other optimizations.

Improving data throughput

3

4,9

5

6,11

8 10 12

2,7

1
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Memory management:
Lifespan of an OpenGL object

Most objects in OpenGL are created and deleted explicitly.  Because these entities 
live in the GPU, they’re outside the scope of Java’s garbage collection.
This means that you must handle your own memory cleanup.

// create and bind buffer object
int name = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, name);

// work with your object
// … 

// delete buffer object, free memory
glDeleteBuffers(name);
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Emulating classic OpenGL1.1 
direct-mode rendering in modern GL

The original OpenGL API allowed 
you to use direct mode to send 
data for immediate output:

glBegin(GL_QUADS);
  glColor3f(0, 1, 0);
  glNormal3f(0, 0, 1);
  glVertex3f(1, -1, 0);
  glVertex3f(1, 1, 0);
  glVertex3f(-1, 1, 0);
  glVertex3f(-1, -1, 0);
glEnd();

Direct mode was very inefficient: the 
GPU was throttled by the CPU.

You can emulate the GL1.1 API:
class GLVertexData {
  void begin(mode) { … }
  void color(color) { … }
  void normal(normal) { … }
  void vertex(vertex) { … }
  …
  void compile() { … }
}

The method compile() can 
encapsulate all the vertex buffer 
logic, making each instance a 
self-contained buffer object.

Check out a working example in the 
class framework.GLVertexData  on 
the course github repo.
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Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner
ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and 
raycast scenes
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2.Perspective and Camera Control

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU
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Getting some perspective

To add 3D perspective to our flat model, we face three 
challenges:

● Compute a 3D perspective matrix
● Pass it to OpenGL, and on to the GPU
● Apply it to each vertex

To do so we’re going to need to apply our perspective matrix 
in the shader, which means we’ll need to build our own 4x4 
perspective transform.
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4x4 perspective matrix transform

Every OpenGL package provides utilities to build a 
perspective matrix.  You’ll usually find a method named 
something like glGetFrustum() which will assemble a 4x4 
grid of floats suitable for passing to OpenGL.

Or you can build your own:
α: Field of view, typically 50°

ar: Aspect ratio of width over 
height

NearZ: Near clip plane

FarZ: Far clip plane

P =
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Writing uniform data from Java

Once you have your perspective matrix, the next step is to copy it out to the 
GPU as a Mat4, GLSL’s 4x4 matrix type.

1. Convert your floats to a FloatBuffer:

2. Write the FloatBuffer to the named uniform:
int uniformLoc = GL20.glGetUniformLocation(
    program, “name”);
if (uniformLoc != -1) {
  GL20.glUniformMatrix 4fv(uniformLoc, false, buffer);
}
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float data[][] = /* your 4x4 matrix here */
FloatBuffer buffer = BufferUtils.createFloatBuffer(16);
for (int col = 0; col < 4; col++) {
  for (int row = 0; row < 4; row++) {
    buffer.put((float) (data[row][col]));
  }
}
buffer.flip();



Reading uniform data in GLSL

The FloatBuffer output is received in the shader as a 
uniform input of type Mat4.

This shader takes a matrix and applies it to each vertex: 
#version 330

uniform mat4 modelToScreen;

in vec4 vPosition;

void main() {
  gl_Position = modelToScreen * vPosition;
}

Use uniforms for fields that 
are constant throughout the 
rendering pass, such as 
transform matrices and 
lighting coordinates. 97



Object position and camera position: a 
‘pipeline’ model of matrix transforms

Object definition

Local or “model” space

Scene composition
Viewing frame definition
Lighting definition

World space

Backface culling
Viewing frustum culling
HUD definition

Viewing

space

Hidden-surface removal
Scan conversion
Shading

3D screen space

Image

Display space

L2W

W2V

V2S

S2D

P’ = S2D • V2S • W2V • L2W 
• PL

P’ = S2D • V2S • W2V • L2W • PL
Each of these transforms can be 
represented by a 4x4 matrix.

98



#version 330

uniform mat4 modelToWorld;
uniform mat4 worldToCamera;
uniform mat4 cameraToScreen;

in vec3 v;

void main() {
  gl_Position = cameraToScreen
      * worldToCamera
      * modelToWorld
      * vec4(v, 1.0);
}

A flexible 3D graphics framework will 
track each transform:
● The object’s current transform 
● The camera’s transform
● The viewing perspective 

transform
These matrices are all “constants” for 
the duration of a single frame of 
rendering.  Each can be written to a 
16-float buffer and sent to the GPU 
with glUniformMatrix4fv.
Remember to fetch uniform names 
with glGetUniformLocation, never 
assume ordering.

The pipeline model in OpenGL & GLSL
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The pipeline model in software:
The matrix stack design pattern

A common design pattern in 3D graphics, especially when 
objects can contain other objects, is to use matrix stacks to 
store stacks of matrices.  The topmost matrix is the 
product of all matrices below.
● This allows you to build a local frame of reference—

local space—and apply transforms within that space.
● Remember: matrix multiplication is associative but not 

commutative.
■ABC = A(BC) = (AB)C ≠ ACB ≠ BCA

Pre-multiplying matrices that will be used more 
than once is faster than multiplying many 
matrices every time you render a primitive.

A

AB

ABC

100



Matrix stacks

Matrix stacks are designed for nested relative 
transforms.

pushMatrix();
  translate(0,0,-5);
  pushMatrix();
    rotate(45,0,1,0);
    render();
  popMatrix();
  pushMatrix();
    rotate(-45,0,1,0);
    render();
  popMatrix();
popMatrix();

identity

T

identity

T

T • R1

identity

T

T • R2

identity

T

…

render your 
geometry here

101



Scene graphs

A scene graph is a tree of 
scene elements where a 
child’s transform is relative 
to its parent.

The final transform of the 
child is the ordered product 
of all of its ancestors in the 
tree.

MfingerToWorld = 
(Mperson • Mtorso • Marm • Mhand • Mfinger)

Person

Torso

Arm Arm Leg …

Hand

Finger

…

…

…
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void renderLevel(GL gl, int level, float t) {
  pushMatrix();
  rotate(t, 0, 1, 0);
  renderSphere(gl);
  if (level > 0) {
    scale(0.75f, 0.75f, 0.75f);
    pushMatrix();
      translate(1, -0.75f, 0);
      renderLevel(gl, level-1, t);
    popMatrix();
    pushMatrix();
      translate(-1, -0.75f, 0);
      renderLevel(gl, level-1, t);
    popMatrix();
  }
  popMatrix();
}

Hierarchical modeling in action
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Hierarchical modeling in action

“HierarchyDemo.java” - github.com/AlexBenton/AdvancedGraphics104

https://github.com/AlexBenton/AdvancedGraphics


3. Lighting and Shading

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU
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Lighting and Shading (a quick refresher)

Recall the classic lighting equation:
● I = kA + kD(N•L) + kS(E•R)

n

where…
● kA is the ambient lighting coefficient of the object or scene
● kD(N•L) is the diffuse component of surface illumination (‘matte’)
● kS(E•R)

n is the specular component of surface illumination (‘shiny’)
where R = L - 2(L•N)N

We compute color by vertex or by polygon fragment:
● Color at the vertex: Gouraud shading
● Color at the polygon fragment: Phong shading

Vertex shader outputs are interpolated across fragments, so 
code is clean whether we’re interpolating colors or normals.
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Lighting and Shading: required data

Shading means we need extra data about vertices.
For each vertex our Java code will need to provide:
● Vertex position
● Vertex normal
● [Optional] Vertex color, kA / kD / kS, reflectance, transparency…

We also need global state:
● Camera perspective transform
● Camera position and orientation, represented as a transform
● Object position and orientation, to modify the vertex positions above
● A list of light positions, ideally in world coordinates
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Shader sample –
Gouraud shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;
uniform vec3 lightPosition;

in vec4 v;
in vec3 n;

out vec4 color;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
  vec3 p = (modelToWorld * v).xyz;
  vec3 n = normalize(normalToWorld * n);
  vec3 l = normalize(lightPosition - p);
  float ambient = 0.2;
  float diffuse = 0.8 * clamp(0, dot(n, l), 1);

  color = vec4(purple 
      * (ambient + diffuse), 1.0);
  gl_Position = modelToScreen * v;
}

#version 330

in vec4 color;

out vec4 fragmentColor;

void main() {
  fragmentColor = color;
}

Diffuse lighting
  d = kD(N•L)

expressed as a shader
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Shader sample –
Phong shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;

in vec4 v;
in vec3 n;

out vec3 position;
out vec3 normal;

void main() {
  normal = normalize(
      normalToWorld * n);
  position = 
      (modelToWorld * v).xyz;
  gl_Position = 
      modelToScreen * v;
}

#version 330

uniform vec3 eyePosition;
uniform vec3 lightPosition;

in vec3 position;
in vec3 normal;

out vec4 fragmentColor;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
  vec3 n = normalize(normal);
  vec3 l = normalize(lightPosition - position);
  vec3 e = normalize(position - eyePosition);
  vec3 r = reflect(l, n);

  float ambient = 0.2;
  float diffuse = 0.4 * clamp(0, dot(n, l), 1);
  float specular = 0.4 * 
      pow(clamp(0, dot(e, r), 1), 2);

  fragmentColor = vec4(purple * 
      (ambient + diffuse + specular), 1.0);
}

a = kA
d = kD(N•L)
s = kS(E•R)n

GLSL includes handy helper methods for 
illumination such as reflect()--perfect for 
specular highlights.
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Shader sample – Gooch shading

Image source: “A 
Non-Photorealistic 
Lighting Model For 
Automatic Technical 
Illustration”, Gooch, 
Gooch, Shirley and 
Cohen (1998).  
Compare the Gooch 
shader, above, to the 
Phong shader (right).

Gooch shading is an example of non-realistic 
rendering.  It was designed by Amy and Bruce 
Gooch to replace photorealistic lighting with a 
lighting model that highlights structural and 
contextual data.
● They use the  term of the conventional lighting 

equation to choose a map between ‘cool’ and ‘warm’ 
colors.
○ This is in contrast to conventional illumination where  

lighting simply scales the underlying surface color.
● This, combined with edge-highlighting through a 

second renderer pass, creates models which look more 
like engineering schematic diagrams.
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Shader sample –
Gooch shading

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd. 

uniform mat4 modelToCamera;
uniform mat4 modelToScreen;
uniform mat3 normalToCamera;

vec3 LightPosition = vec3(0, 10, 4);

in vec4 vPosition;
in vec3 vNormal;

out float NdotL;
out vec3  ReflectVec;
out vec3  ViewVec;

void main()
{
  vec3 ecPos      = vec3(modelToCamera * vPosition);
  vec3 tnorm      = normalize(normalToCamera * vNormal);
  vec3 lightVec   = normalize(LightPosition - ecPos);
  ReflectVec      = normalize(reflect(-lightVec, tnorm));
  ViewVec         = normalize(-ecPos);
  NdotL           = (dot(lightVec, tnorm) + 1.0) * 0.5;
  gl_Position     = modelToScreen * vPosition;
}

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd. 

uniform vec3 vColor;

float DiffuseCool = 0.3;
float DiffuseWarm = 0.3;
vec3 Cool = vec3(0, 0, 0.6);
vec3 Warm = vec3(0.6, 0, 0);

in float NdotL;
in vec3  ReflectVec;
in vec3  ViewVec;

out vec4 result;

void main()
{
  vec3 kcool  = min(Cool + DiffuseCool * vColor, 1.0);
  vec3 kwarm  = min(Warm + DiffuseWarm * vColor, 1.0); 
  vec3 kfinal = mix(kcool, kwarm, NdotL);

  vec3 nRefl  = normalize(ReflectVec);
  vec3 nview  = normalize(ViewVec);
  float spec  = pow(max(dot(nRefl, nview), 0.0), 32.0);

  if (gl_FrontFacing) {
    result = vec4(min(kfinal + spec, 1.0), 1.0);
  } else {
    result = vec4(0, 0, 0, 1);
  }
}
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Shader sample – Gooch shading
In the vertex shader source, notice the use of the built-in ability to 

distinguish front faces from back faces:
if (gl_FrontFacing) {...

This supports distinguishing front faces (which should be shaded 
smoothly) from the edges of back faces (which will be drawn in heavy 
black.)
In the fragment shader source, this is used to choose the weighted  color 
by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL);
Here mix() is a GLSL method which returns the linear interpolation 
between kcool and kwarm.  The weighting factor is NdotL, the  
lighting value.
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Shader sample – Gooch shading
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// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

  bool isOutsideFace = 

      (length(position - CENTER) > 1);

  vec3 color = isOutsideFace ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);

}

Procedural texturing in the 
fragment shader

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

  bool isOutsideFace = 

      (length(position - CENTER) > 1);

  bool isMouth = 

      (length(position - CENTER) < 0.75)

      && (position.y <= -0.1);

  vec3 color = (isMouth || isOutsideFace)

      ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);

}

(Code truncated for brevity--again, check out 
the source on github for how I did the curved 
mouth and oval eyes.)

// ...

const vec3 CENTER = vec3(0, 0, 1);

const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);

const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);

// ...

void main() {

  bool isOutsideFace = (length(position - CENTER) > 
1);

  bool isEye = (length(position - LEFT_EYE) < 0.1)

      || (length(position - RIGHT_EYE) < 0.1);

  bool isMouth = (length(position - CENTER) < 0.75)

      && (position.y <= -0.1);

  vec3 color = (isMouth || isEye || isOutsideFace)

      ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);

}
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Advanced surface effects

● Specular highlighting
● Non-photorealistic 

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the 

shader
● ...much, much more!
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Antialiasing on the GPU

Hardware antialiasing can dramatically 
improve image quality.
● The naïve approach is to supersample the image
● This is easier in shaders than it is in standard 

software
● But it really just postpones the problem.

Several GPU-based antialiasing solutions 
have been found.
● Eric Chan published an elegant polygon-based 

antialiasing approach in 2004 which uses the GPU 
to prefilter the edges of a model and then blends 
the filtered edges into the original polygonal 
surface.  (See figures at right.)
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Antialiasing on the GPU

One clever form of antialiasing is adaptive analytic 
prefiltering.
● The precision with which an edge is rendered to the screen is 

dynamically refined based on the rate at which the function defining 
the edge is changing with respect to the surrounding pixels on the 
screen.

This is supported in the shader language by the methods 
dFdx(F) and dFdy(F).  
● These methods return the derivative with respect to X and Y of some 

variable F.
● These are commonly used in choosing the filter width for antialiasing 

procedural textures.

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the 
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost, 
Addison Wesley, 2006.  Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 117



Particle systems on the GPU

Shaders extend the use of texture memory 
dramatically. Shaders can write to texture 
memory, and textures are no longer limited 
to being two-dimensional planes of 
RGB(A).
● A particle systems can be represented 

by storing a position and velocity for 
every particle.

● A fragment shader can render a particle 
system entirely in hardware by using 
texture memory to store and evolve 
particle data.

Image by Michael Short

118



Tessellation shaders

One use of tessellation is in rendering 
geometry such as game models or terrain 
with view-dependent Levels of Detail 
(“LOD”).
Another is to do with geometry what 

ray-tracing did with bump-mapping: 
high-precision realtime geometric 
deformation.

Tesselation is a new shader type 
introduced in OpenGL 4.x. Tesselation 
shaders generate new vertices within 
patches, transforming a small number of 
vertices describing triangles or quads 
into a large number of vertices which 
can be positioned individually.

jabtunes.com’s WebGL tessellation demo
Florian Boesch’s LOD terrain demo

http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

N
ot

e 
ho

w
 tr

ia
ng

le
s a

re
 sm

al
l a

nd
 

de
ta

ile
d 

cl
os

e 
to

 th
e 

ca
m

er
a,

 b
ut

 
be

co
m

e 
ve

ry
 la

rg
e 

an
d 

co
ar

se
 in

 
th

e 
di

st
an

ce
.

119

http://jabtunes.com/labs/3d/webgl_geometry_tessellation_exploding.html#Tessellation
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/


Tessellation shaders

How it works:
● You tell OpenGL how many vertices a single 

patch will have:
glPatchParameteri(GL_PATCH_VERTICES, 4);

● You tell OpenGL to render your patches:
glDrawArrays(GL_PATCHES, first, numVerts);

● The Tessellation Control Shader specifies output 
parameters defining how a patch is split up: 
gl_TessLevelOuter[] and 
gl_TessLevelInner[]. 
These control the number of vertices per primitive 
edge and the number of nested inner levels, 
respectively.

Vertex shader

Tessellation Control Shader

Tessellation primitive generator

Tessellation Evaluation Shader

Geometry shader

Fragment shader

...
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Tessellation shaders

● The tessellation primitive 
generator generates new 
vertices along the outer edge 
and inside the patch, as 
specified by 
gl_TessLevelOuter[] and 
gl_TessLevelInner[].

Each field is an array.  Within the 
array, each value sets the number of 
intervals to generate during 
subprimitive generation.
Triangles are indexed similarly, but 

only use the first three Outer and 
the first Inner array field.

gl_TessLevelOuter[3] = 5.0

gl_TessLevelOuter[1] = 3.0

gl_TessLevelInner[1] = 4.0
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Tessellation shaders
● The generated vertices are 

then passed to the 
Tesselation Evaluation 
Shader, which can update 
vertex position, color, 
normal, and all other 
per-vertex data.

● Ultimately the complete 
set of new vertices is 
passed to the geometry 
and fragment shaders.

Image credit: Philip Rideout
http://prideout.net/blog/?p=48122

http://prideout.net/blog/?p=48


CPU vs GPU – an object demonstration

“NVIDIA: Mythbusters - CPU vs GPU”
https://www.youtube.com/watch?v=-P28LKWTzrI 

R
ed

ux
: h

ttp
://

w
w

w
.y

ou
tu

be
.c

om
/w

at
ch

?v
=f

K
K

93
3K

K
6G

g

123

https://www.youtube.com/watch?v=-P28LKWTzrI
http://www.youtube.com/watch?v=fKK933KK6Gg
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Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner
ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and 
raycast scenes
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GPU Ray Marching
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Advanced Graphics
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GPU Ray-tracing

Ray tracing 101: “Choose the color of 
the pixel by firing a ray through and 
seeing what it hits.”

Ray tracing 102: 
“Let the pixel make up 
its own mind.”
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GPU Ray-tracing

1. Use a minimal fragment shader 
(no transforms)

2. Set up OpenGL with minimal 
geometry, a single quad

3. Bind a vec2 to each vertex 
specifying ‘texture’ coordinates

4. Implement raytracing in GLSL 
per pixel:
a. For each pixel, compute the ray 

from the eye through the pixel, 
using the interpolated texture 
coordinate to identify the pixel

b. Run the ray tracing algorithm 
for every ray
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vec3 getRayDir(
    vec3 camDir, 
    vec3 camUp, 
    vec2 texCoord) {
  vec3 camSide = normalize(
      cross(camDir, camUp));
  vec2 p = 2.0 * texCoord - 1.0;
  p.x *= iResolution.x 
      / iResolution.y;
  return normalize(
      p.x * camSide
      + p.y * camUp 
      + iPlaneDist * camDir);
}

// Window dimensions
uniform vec2 iResolution;

// Camera position
uniform vec3 iRayOrigin;

// Camera facing direction
uniform vec3 iRayDir;

// Camera up direction
uniform vec3 iRayUp;

// Distance to viewing plane
uniform float iPlaneDist;

// ‘Texture’ coordinate of each
// vertex, interpolated across
// fragments (0,0) → (1,1)
in vec2 texCoord;

GPU Ray-tracing
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Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) {
  float OdotD = dot(rayorig - pos, raydir);
  float OdotO = dot(rayorig - pos, rayorig - pos);
  float base = OdotD * OdotD - OdotO + radius * radius;

  if (base >= 0) {
    float root = sqrt(base);
    float t1 = -OdotD + root;
    float t2 = -OdotD - root;
    if (t1 >= 0 || t2 >= 0) {
      float t = (t1 < t2 && t1 >= 0) ? t1 : t2;
      vec3 pt = rayorig + raydir * t;
      vec3 normal = normalize(pt - pos);
      return Hit(pt, normal, t);
    }
  }
  return Hit(vec3(0), vec3(0), -1);
}

GPU Ray-tracing
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An alternative to raytracing: 
Ray-marching

An alternative to classic ray-tracing is 
ray-marching, in which we take a 
series of finite steps along the ray until 
we strike an object or exceed the 
number of permitted steps.

● Also sometimes called ray casting
● Scene objects only need to answer, 

  “has this ray hit you? y/n”
● Great solution for data like height fields
● Unfortunately…

○ often involves many steps
○ too large a step size can lead to lost 

intersections (step over the object)
○ an if() test in the heart of a for() loop 

is very hard for the GPU to optimize
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GPU Ray-marching:
Signed Distance Fields

Ray-marching can be dramatically 
improved, to impressive realtime 
GPU performance, using signed 
distance fields:

1. Fire ray into scene
2. At each step, measure distance field 

function: d(p) = [distance to nearest 
object in scene]

3. Advance ray along ray heading by 
distance d, because the nearest 
intersection can be no closer than d

This is also sometimes called ‘sphere tracing’.  Early paper:

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

131

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf


float sphere(vec3 p, float r) {
  return length(p) - r;
}

float cube(vec3 p, vec3 dim) {
  vec3 d = abs(p) - dim;
  return min(max(d.x,
      max(d.y, d.z)), 0.0)
      + length(max(d, 0.0));
}

float cylinder(vec3 p, vec3 dim) 
{
  return length(p.xz - dim.xy) 
      - dim.z;
}

float torus(vec3 p, vec2 t) {
  vec2 q = vec2(
      length(p.xz) - t.x, p.y);
  return length(q) - t.y;
}

Signed distance functions
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An SDF returns the minimum possible 
distance from point p to the surface 
it describes.

The sphere, for instance, is the distance 
from p to the center of the sphere, 
minus the radius.

Negative values indicate a sample 
inside the surface, and still express 
absolute distance to the surface.

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields 

https://www.scratchapixel.com/lessons/advanced-rendering/rendering-distance-fields


Raymarching signed distance fields
vec3 raymarch(vec3 pos, vec3 raydir) {
  int step = 0;
  float d = getSdf(pos);

  while (abs(d) > 0.001 && step < 50) {
    pos = pos + raydir * d;
    d = getSdf(pos);  // Return sphere(pos) or any other
    step++;
  }
  
  return 
      (step < 50) ? illuminate(pos, rayorig) : background;
}
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Visualizing step count

Final image Distance field

Brighter = more steps, up to 50
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Combining SDFs
We combine SDF models by choosing 
which is closer to the sampled point.

● Take the union of two SDFs by 
taking the min() of their 
functions.

● Take the intersection of two 
SDFs by taking the max() of their 
functions.

● The max() of function A and the 
negative of function B will return 
the difference of A - B.

By combining these binary operations 
we can create functions which describe 
very complex primitives.
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Combining SDFs
min(A, B)

(union)

max(A, B) 
(intersection)

max(-A, B)
(difference)

136



Taking the min(), max(), etc of  two SDFs yields a 
sharp discontinuity. Interpolating the two SDFs with 
a smooth polynomial yields a smooth distance curve, 
blending the models:

Blending SDFs

float blend(float a, float b, float k) {
  a = pow(a, k);
  b = pow(b, k);
  return pow((a * b) / (a + b), 1.0 / k);
}

Sample blending function (Quilez)
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Transforming SDF geometry

To rotate, translate or scale an SDF model, apply the inverse transform to the 
input point within your distance function.
Ex:

This renders a sphere centered at (0, 3, 0).
More prosaically, assemble your local-to-world transform as usual, but apply its 
inverse to the pt within your distance function.

float sphere(vec3 pt, float radius) {
  return length(pt) - radius;
}

float f(vec3 pt) {
  return sphere(pt - vec3(0, 3, 0));
}
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Transforming SDF geometry
float fScene(vec3 pt) {

  // Scale 2x along X
  mat4 S = mat4(
      vec4(2, 0, 0, 0),
      vec4(0, 1, 0, 0),
      vec4(0, 0, 1, 0),
      vec4(0, 0, 0, 1));
  
  // Rotation in XY
  float t = sin(time) * PI / 4;
  mat4 R = mat4(
      vec4(cos(t),  sin(t), 0, 0),
      vec4(-sin(t), cos(t), 0, 0),
      vec4(0,       0,      1, 0),
      vec4(0,       0,      0, 1));

  // Translate to (3, 3, 3)
  mat4 T = mat4(
      vec4(1, 0, 0, 3),
      vec4(0, 1, 0, 3),
      vec4(0, 0, 1, 3),
      vec4(0, 0, 0, 1));
      
  pt = (vec4(pt, 1) * inverse(S * R * T)).xyz;

  return sdSphere(pt, 1);
}
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Transforming SDF geometry

The previous example modified ‘all 
of space’ with the same transform, 
so its distance functions retain 
their local linearity.

We can also apply non-uniform 
spatial distortion, such as by 
choosing how much we’ll modify 
space as a function of where in 
space we are.

float fScene(vec3 pt) {
  pt.y -= 1;
  float t = (pt.y + 2.5) * sin(time);
  return sdCube(vec3(
    pt.x * cos(t) - pt.z * sin(t), 
    pt.y / 2, 
    pt.x * sin(t) + pt.z * cos(t)), vec3(1));
}
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Find the normal to an SDF

Finding the normal: local gradient

The distance function is locally linear and 
changes most as the sample moves directly 
away from the surface.  At the surface, the 
direction of greatest change is therefore 
equivalent to the normal to the surface.  

Thus the local gradient (the normal) can be 
approximated from the distance function.

float d = getSdf(pt);
vec3 normal = normalize(vec3(
    getSdf(vec3(pt.x + 0.0001, pt.y, pt.z)) - d,
    getSdf(vec3(pt.x, pt.y + 0.0001, pt.z)) - d,
    getSdf(vec3(pt.x, pt.y, pt.z + 0.0001)) - d));
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SDF shadows

Ray-marched shadows are 
straightforward: march a ray 
towards each light source, don’t 
illuminate if the SDF ever drops 
too close to zero.

Unlike ray-tracing, soft shadows are 
almost free with SDFs: attenuate 
illumination by a linear function of 
the ray marching near to another 
object.
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float shadow(vec3 pt) {
  vec3 lightDir = normalize(lightPos - pt);
  float kd = 1;
  int step = 0;

  for (float t = 0.1; 
      t < length(lightPos - pt) 
      && step < renderDepth && kd > 0.001; ) {
    float d = abs(getSDF(pt + t * lightDir));
    if (d < 0.001) {
      kd = 0;
    } else {
      kd = min(kd, 16 * d / t);
    }
    t += d;
    step++;
  }
  return kd;
}

Soft SDF shadows

By dividing d by t, we 
attenuate the strength 
of the shadow as its 
source is further from 
the illuminated point.
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Repeating SDF geometry

If we take the modulus of a point’s 
position along one or more axes 
before computing its signed 
distance, then we segment space 
into infinite parallel regions of 
repeated distance.  Space near the 
origin ‘repeats’.

With SDFs we get infinite repetition 
of geometry for no extra cost.

float fScene(vec3 pt) {
  vec3 pos;
  pos = vec3(mod(pt.x + 2, 4) - 2, pt.y, mod(pt.z + 2, 4) - 2);
  return sdCube(pos, vec3(1));
}
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Repeating SDF geometry

● sdSphere(4, 4)
  = √(4*4+4*4) - 1
  = ~4.5

float sphere(vec3 pt, float radius) {
  return length(pt) - radius;
}

● sdSphere(
    ((4 + 2) % 4) - 2, 4)
  = √(0*0+4*4) - 1
  = 3

● sdSphere(
    ((4 + 2) % 4) - 2,
    ((4 + 2) % 4) - 2)
  = √(0*0+0*0) - 1
  = -1 // Inside surface
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SDF - Live demo
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Recommended reading

Seminal papers:

● John C. Hart et al., “Ray Tracing Deterministic 3-D Fractals”, 
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf 

● John C. Hart, “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit 
Surfaces”, http://graphics.cs.illinois.edu/papers/zeno 

Special kudos to Inigo Quilez and his amazing blog:

● http://iquilezles.org/www/articles/smin/smin.htm 
● http://iquilezles.org/www/articles/distfunctions/distfunctions.htm 

Other useful sources:

● Johann Korndorfer, “How to Create Content with Signed Distance Functions”, 
https://www.youtube.com/watch?v=s8nFqwOho-s 

● Daniel Wright, “Dynamic Occlusion with Signed Distance Fields”, 
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf

● 9bit Science, “Raymarching Distance Fields”, 
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html
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Terminology

● We’ll be focusing on discrete (as 
opposed to continuous) representation 
of geometry; i.e., polygon meshes
● Many rendering systems limit themselves 

to triangle meshes
● Many require that the mesh be manifold

● In a closed manifold polygon mesh:
● Exactly two triangles meet at each edge
● The faces meeting at each vertex belong to 

a single, connected loop of faces
● In a manifold with boundary:

● At most two triangles meet at each edge
● The faces meeting at each vertex belong to 

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s 
Fundamentals of Computer Graphics, pp. 262-263
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Terminology

● We say that a surface is oriented if:
a. the vertices of every face are stored in a fixed 

order
b. if vertices i, j appear in both faces f1 and f2, then 

the vertices appear in order i, j in one and j, i in 
the other

● We say that a surface is embedded if, 
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space 

with any other vertex, edge or face except where 
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate 
3-space into two parts: a bounded interior 
and an unbounded exterior.

A cube with “anti-clockwise” 
oriented faces

Klein bottle: 
not an 
embedded 
surface.

Also, terrible 
for holding 
drinks.

This slide draws much inspiration from Hughes and Van Dam’s 
Computer Graphics: Principles and Practice, pp. 637-642
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Normal at a vertex

Expressed as a limit, 
The normal of surface S at point P is the limit of the 
cross-product between two (non-collinear) vectors 
from P to the set of points in S at a distance r from P 
as r goes to zero.  [Excluding orientation.]
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Normal at a vertex

Using the limit definition, is the ‘normal’ to a 
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a 

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept 

out on a unit sphere between the two normals of the 
two faces.

● The ‘normal’ to the surface at a vertex is a space swept 
out on the unit sphere between the normals of all of the 
adjacent faces.
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Finding the normal at a vertex

Take the weighted average 
of the normals of 
surrounding polygons, 
weighted by each polygon’s 
face angle at the vertex

Face angle: the angle α 
formed at the vertex v by the 
vectors to the next and 
previous vertices in the face F

Note: In this equation, arccos 
implies a convex polygon. Why?

NF
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Gaussian curvature on smooth surfaces

Informally speaking, the 
curvature of a surface 
expresses “how flat the 
surface isn’t”.
● One can measure the 

directions in which the 
surface is curving most; these 
are the directions of principal 
curvature, k1 and k2.

● The product of k1 and k2 is the 
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia
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Gaussian curvature on smooth surfaces

Formally, the Gaussian 
curvature of a region on a 
surface is the ratio between 
the area of the surface of the 
unit sphere swept out by the 
normals of that region and 
the area of the region itself.
The Gaussian curvature of a 
point is the limit of this ratio 
as the region tends to zero 
area.

Area on the surface
Area of the projections 
of the normals on the 
unit sphere

anus
as

0 on a plane

anus
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)
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Gaussian curvature on discrete surfaces

On a discrete surface, normals do not vary smoothly: the 
normal to a face is constant on the face, and at edges and 
vertices the normal is—strictly speaking—undefined. 
● Normals change instantaneously (as one's point of view travels across an 

edge from one face to another) or not at all (as one's point of view travels 
within a face.) 

The Gaussian curvature of the surface of any polyhedral 
mesh is zero everywhere except at the vertices, where it is 
infinite.
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Angle deficit – a better solution for 
measuring discrete curvature

The angle deficit AD(v) of a vertex v is defined to be two π 
minus the sum of the face angles of the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚
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Angle deficit

High angle deficit Low angle deficit Negative angle deficit
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Hmmm…

Angle deficit
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Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed 
surface is
...“a topologically invariant property of a 

surface defined as the largest number 
of nonintersecting simple closed 
curves that can be drawn on the 
surface without separating it.” 

--mathworld.com
● Informally, it’s the number of 

coffee cup handles in the surface.

Genus 0

Genus 1
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Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border 
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:
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Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces
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The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that 
on a surface S with Euler characteristic χ, the sum of 
the angle deficits of the vertices is 2πχ:

Cube: 
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron: 
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ
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The Voronoi diagram(2) of a set of 
points Pi divides space into 
‘cells’, where each cell Ci 
contains the points in space 
closer to Pi than any other Pj.

The Delaunay triangulation is the 
dual of the Voronoi diagram: a 
graph in which an edge 
connects every Pi which share a 
common edge in the Voronoi 
diagram.

A Voronoi diagram (dotted lines) and its 
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet 
domain”, “Thiessen polygons”, “plesiohedra”, 
“fundamental areas”, “domain of action”…

Voronoi diagrams
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Delaunay triangulation applet by Paul Chew ©1997—2007 
http://www.cs.cornell.edu/home/chew/Delaunay.html 

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal 
definition of a Voronoi cell C(S,pi) is
   C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points 
of the diagram.

Where three or more boundary edges 
meet is a Voronoi point.  Each Voronoi 
point is at the center of a circle (or 
sphere, or hypersphere…) which passes 
through the associated generating points 
and which is guaranteed to be empty of 
all other generating points.
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Delaunay triangulations and equi-angularity

The equiangularity of any 
triangulation of a set of points 
S is a sorted list of the angles 
(α1… α3t) of the triangles.
● A triangulation is said to be 

equiangular if it possesses 
lexicographically largest 
equiangularity amongst all 
possible triangulations of S.

● The Delaunay triangulation 
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and empty circles

Voronoi triangulations have 
the empty circle property: in 
any Voronoi triangulation of S, 
no point of S will lie inside the 
circle circumscribing any three 
points sharing a triangle in the 
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and convex hulls
The border of the Delaunay 
triangulation of a set of points is 
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a 
set of points in Rn is the planar 
projection of a convex hull in 
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft 

the points upwards, onto a 
parabola in 3D 
(P’i={x,y,x2+y2}i). The 
resulting polyhedral mesh will 
still be convex in 3D.
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Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points 
within the surface equidistant to the two or more 
nearest points on the surface.
● This can be used to extract a skeleton of the 

surface, for (for example) path-planning 
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June 
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang 

Approximating the Medial Axis from the Voronoi 
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha       
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Fortune’s algorithm
1. The algorithm maintains a sweep line and a 

“beach line”, a set of parabolas advancing 
left-to-right from each point.  The beach line 
is the union of these parabolas.
a. The intersection of each pair of 

parabolas is an edge of the voronoi 
diagram

b. All data to the left of the beach line is 
“known”; nothing to the right can 
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the 

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s 

algorithm is O(n log n)
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GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be 

rendered on the GPU, 
search all points for the 
nearest point

Elegant (and 2D only):
● Render each point as a 

discrete 3D cone in 
isometric projection, let 
z-buffering sort it out
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Implicit surfaces 
Implicit surface modeling(1) is a 
way to produce very ‘organic’ or 
‘bulbous’ surfaces very quickly 
without subdivision or NURBS.
Uses of implicit surface 
modelling:
● Organic forms and nonlinear 

shapes
● Scientific modeling (electron 

orbitals, gravity shells in space, 
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force 
functions”, “blobby modeling”… 172



How it works
The user controls a set of control 
points; each point in space 
generates a field of force, which 
drops off as a function of distance 
from the point.  This 3D field of 
forces defines an implicit surface: 
the set of all the points in space 
where the force field sums to a key 
value.

Force = 2

1

0.5

0.25 ...
173

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
  a(1- 3r2 / b2) 0    ≤ r < b/3

F(r) =   (3a/2)(1-r/b)2 b/3 ≤ r < b
  0 b    ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)



Discovering the surface

An octree is a recursive subdivision of 
space which “homes in” on the surface, 
from larger to finer detail.  
● An octree encloses a cubical volume in space.  

You evaluate the force function F(v) at each 
vertex v of the cube. 

● As the octree subdivides and splits into smaller 
octrees, only the octrees which contain some of 
the surface are processed; empty octrees are 
discarded.
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Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.
● If some corners are “hot” (above the force limit) and others are 

“cold” (below the force limit) then the implicit surface crosses the 
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more 
rings, which can be triangulated.  The normal is known from the 
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any 
child whose vertices are all hot or all cold.
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Polygonizing the surface

Recursive subdivision (on a quadtree):
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Polygonizing the surface
There are fifteen possible 
configurations (up to symmetry) of 
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in 
the polygonization which must be 
addressed separately.  ↓

Images courtesy of Diane Lingrand
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Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose 

vertices are the midpoints of the edges which lie 
between hot and cold vertices.

● The vertices of the implicit surface can be more 
closely approximated by points linearly interpolated 
along the edges of the cube by the weights of the 
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)
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Implicit surfaces -- demo
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CAD, CAM, and a new motivation: 
shiny things

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.



History
The term spline comes from 
the shipbuilding industry: long, 
thin strips of wood or metal 
would be bent and held in 
place by heavy ‘ducks’, lead 
weights which acted as control 
points of the curve.
Wooden splines can be 
described by Cn-continuous 
Hermite polynomials which 
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm 

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm


The drive for smooth CAD/CAM

● Continuity (smooth curves) can  
be essential to the perception of 
quality.  

● The automotive industry wanted 
to design cars which were 
aerodynamic, but also visibly of 
high quality.

● Bezier (Renault) and de Casteljau 
(Citroen) invented Bezier curves 
in the 1960s.  de Boor (GM) 
generalized them to B-splines.



Beziers—a quick review
● A Bezier cubic is a function P(t) defined 

by four control points:
● P1 and P4 are the endpoints of the curve
● P2 and P3 define the other two corners of the 

bounding polygon.
● The curve fits entirely within the convex 

hull of P1...P4.
● Beziers are a subset of a broader class of 

splines and surfaces called NURBS: Non 
Uniform Rational B-Splines.

● For decades, NURBS patches have been 
the bedrock of CAD/CAM.

P1

P2 P3

P4

Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4



Bezier (NURBS) patches aren’t the greatest

● NURBS patches are nxm, 
forming a mesh of quadrilaterals.
● What if you wanted triangles or 

pentagons?  
● A NURBS dodecahedron?

● What if you wanted vertices of valence other than 
four?

● NURBS expressions for triangular patches, 
and more, do exist; but they’re cumbersome.
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Problems with NURBS patches
● Joining NURBS patches 

with Cn continuity 
across an edge is 
challenging.

● What happens to 
continuity at corners 
where the number of 
patches meeting isn’t 
exactly four?

● Animation is tricky: 
bending and blending 
are doable, but not easy.

Sadly, the world isn’t made up of shapes that 
can always be made from one 
smoothly-deformed rectangular surface.
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● The solution: 
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding: 
we want guaranteed 
continuity, without 
having to build 
everything out of 
rectangular patches.
● Applications include 

CAD/CAM, 3D 
printing, museums and 
scanning, medicine, 
movies…

Geri’s Game, by Pixar (1997)
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Subdivision surfaces

● Instead of ticking a parameter t along 
a parametric curve (or the parameters 
u,v over a parametric grid), 
subdivision surfaces repeatedly refine 
from a coarse set of control points.

● Each step of refinement adds new 
faces and vertices.

● The process converges to a smooth 
limit surface.

(Catmull-Clark in action)189



Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision 
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two 
separate groups during 1978:
● Doo and Sabin found a biquadratic surface
● Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn 
[Butterfly subdivision], 1990) led to tools suitable 
for CAD/CAM and animation
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Subdivision surfaces and the movies

● Pixar first demonstrated subdivision 
surfaces in 1997 with Geri’s Game.  
● Up until then they’d done everything in 

NURBS (Toy Story, A Bug’s Life.)
● From 1999 onwards everything they did was 

with subdivision surfaces (Toy Story 2, 
Monsters Inc, Finding Nemo...)

● Two decades on, it’s all heavily customized - 
creases and edges can be detailed by artists 
and regions of subdivision can themselves be 
dynamically subdivided
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Useful terms
● A scheme which describes a 1D curve (even if that curve is 

travelling in 3D space, or higher) is called univariate, referring 
to the fact that the limit curve can be approximated by a 
polynomial in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the 
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control 
points is called an interpolating scheme.

● A scheme which moves away from its 
original control points, converging to a 
limit curve or surface nearby, is called an 
approximating scheme.

Control surface for Geri’s head
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How it works

● Example: Chaikin curve subdivision (2D)
● On each edge, insert new control points at ¼ and 

¾ between old vertices; delete the old points
● The limit curve is C1 everywhere (despite the poor 

figure.)
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Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will 
have twice as many control points as before.
Notice the different treatment of generating odd and 
even control points.
Borders (terminal points) are a special case.

←Even

←Odd
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Notation

Chaikin can be written in vector notation as:
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Notation
● The standard notation compresses the scheme to a kernel:

● h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of 

the matrix form can be used to prove the continuity of the 
subdivision limit surface.
● The details of analysis are fascinating, lengthy, and sadly 

beyond the scope of this course
● The limit curve of Chaikin is a quadratic B-spline!
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Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel
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Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A + 

(3/16) B + 
(3/16) C + 
(1/16) D

This replaces every old vertex 
with four new vertices.
The limit surface is biquadratic, 
C1 continuous everywhere.

P

A
B

C
D

9
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Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces
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Catmull-Clark

● Catmull-Clark is a bivariate approximating 
scheme with kernel h=(1/8)[1,4,6,4,1].
● Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge
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Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule
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Catmull-Clark in action
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Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
203



Extraordinary vertices
● Catmull-Clark and Doo-Sabin both 

operate on quadrilateral meshes.
● All faces have four boundary edges
● All vertices have four incident edges

● What happens when the mesh contains 
extraordinary vertices or faces?
● For many schemes, adaptive weights exist 

which can continue to guarantee at least 
some (non-zero) degree of continuity, but 
not always the best possible.

● CC replaces extraordinary faces with 
extraordinary vertices; DS replaces 
extraordinary vertices with extraordinary 
faces.

Detail of Doo-Sabin at cube 
corner
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Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex 
rules generalized for 
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in 

the one-ring:
3/2n2

● Interleaved neighbors in 
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision 
Surfaces”, Ignacio Castaño, SIGGRAPH 2008 205



Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts
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11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)
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Loop subdivision

Loop subdivision in action.  The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html
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Creases

Extensions exist for most schemes to support 
creases, vertices and edges flagged for partial or 
hybrid subdivision.

Still from “Volume 
Enclosed by 
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg, 
Ulrich Reif, Scott 
Schaefer, Joe Warren
http://vixra.org/pdf/1
406.0060v1.pdf
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Continuous level of detail

For live applications (e.g. games) can compute 
continuous level of detail, e.g. as a function of 
distance:

Level 5 Level 5.2 Level 5.8 209



Direct evaluation of the limit surface

● In the 1999 paper Exact Evaluation Of 
Catmull-Clark Subdivision Surfaces at Arbitrary 
Parameter Values, Jos Stam (now at 
Alias|Wavefront) describes a method for finding 
the exact final positions of the CC limit surface.
● His method is based on calculating the tangent and normal 

vectors to the limit surface and then shifting the control 
points out to their final positions.

● What’s particularly clever is that he gives exact evaluation 
at the extraordinary vertices.  (Non-trivial.)
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Bounding boxes and convex hulls for 
subdivision surfaces
● The limit surface is (the weighted average of (the weighted 

averages of (the weighted averages of (repeat for eternity…)))) 
the original control points.

● This implies that for any scheme where all weights are positive 
and sum to one, the limit surface lies entirely within the 
convex hull of the original control points.

● For schemes with negative weights:
● Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter 

space of the absolute values of the weights.
● For a scheme with negative weights, L will exceed 1.
● Then the limit surface must lie within the convex hull of the 

original control points, expanded unilaterally by a ratio of (L-1).
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Splitting a subdivision surface
Many algorithms rely on subdividing a surface and 
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the 
limit surface will change (see right)
● Need to include all control points from the previous 

generation, which influence the limit surface in this 
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 212



Ray/surface intersection
● To intersect a ray with a subdivision surface, 

we recursively split and split again, 
discarding all portions of the surface whose 
bounding boxes / convex hulls do not lie on 
the line of the ray.

● Any subsection of the surface which is ‘close 
enough’ to flat is treated as planar and the 
ray/plane intersection test is used.

● This is essentially a binary tree search for the 
nearest point of intersection.  
● You can optimize by sorting your list of 

subsurfaces in increasing order of distance 
from the origin of the ray.

213



Rendering subdivision surfaces
● The algorithm to render any subdivision surface is exactly the 

same as for Bezier curves:
“If the surface is simple enough, render it directly; 
otherwise split it and recurse.”

● One fast test for “simple enough” is, 
“Is the convex hull of the limit surface 
sufficiently close to flat?”

● Caveat: splitting a surface and 
subdividing one half but not the 
other can lead to tears where 
the different resolutions meet. →
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Figure from Generic Mesh Renement on GPU,
Tamy Boubekeur & Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordeaux, France

Rendering subdivision surfaces on the GPU

● Subdivision algorithms have been ported to the 
GPU using geometry (tesselation) shaders.
● This subdivision can be done completely independently of 

geometry, imposing no demands on the CPU.
● Uses a complex blend 

of precalculated weights 
and shader logic

● Impressive effects
in use at id, Valve,
et al
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Subdivision Schemes—A partial list
● Approximating

● Quadrilateral
● (1/2)[1,2,1]
● (1/4)[1,3,3,1] 

(Doo-Sabin)
● (1/8)[1,4,6,4,1] 

(Catmull-Clark)
● Mid-Edge

● Triangles
● Loop

● Interpolating
● Quadrilateral

● Kobbelt
● Triangle

● Butterfly
● “√3” Subdivision

Many more exist, some much 
more complex
This is a major topic of 
ongoing research
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“Cyberspace. A consensual hallucination experienced 
daily by billions of legitimate operators, in every 
nation, by children being taught mathematical 
concepts... A graphic representation of data abstracted 
from banks of every computer in the human system. 
Unthinkable complexity. Lines of light ranged in the 
nonspace of the mind, clusters and constellations of 
data. Like city lights, receding...”

― William Gibson, Neuromancer (1984)



What is… the Matrix?

What is Virtual Reality?
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Immersion is the art and technology of surrounding 
the user with a virtual context, such that there’s 
world above, below, and all around them.

Presence is the visceral reaction to a convincing 
immersion experience. It’s when immersion is so 
good that the body reacts instinctively to the 
virtual world as though it’s the real one.

When you turn your head to look up at the attacking 
enemy bombers, that’s immersion; when you can’t 
stop yourself from ducking as they roar by 
overhead, that’s presence.

Top: HTC Vive (Image creduit: Business Insider)
Middle: The Matrix (1999)
Bottom: Google Daydream View (2016)



The “Sword of Damocles” (1968)
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In 1968, Harvard Professor 
Ivan Sutherland, working 
with his student Bob Sproull, 
invented the world’s first 
head-mounted display, or 
HMD. 

“The right way to think about 
computer graphics is that the 
screen is a window through which 
one looks into a virtual world.  
And the challenge is to makes the 
world look real, sound real, feel 
real and interact realistically.”

-Ivan Sutherland (1965)



Our eyes and brain compute depth cues from many 
different signals:

● Binocular vision (“stereopsis”)
The brain merges two images into one with depth
○ Ocular convergence
○ Shadow stereopsis

● Perspective
Distant things are smaller

● Parallax motion and occlusion
Things moving relative to each other, or in front of each other, convey depth

● Texture, lighting and shading
We see less detail far away; shade shows shape; distant objects are fainter

● Relative size and position and connection to the ground
If we know an object’s size we can derive distance, or the reverse; if an 
object is grounded, perspective on the ground anchors the object’s distance

Distance and Vision

222Image: Pere Borrell del Caso’s Escapando la Critica (“Escaping Criticism”) (1874)
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Perspective

Ambient 
shadows

Occlusion

Shadows

Image credit: Scott Murray

Murray, Boyaci, Kersten, The 
representation of perceived 
angular size in human
primary visual cortex, Nature 
Neuroscience (2006)



Binocular display
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Today’s VR headsets work by 
presenting similar, but different, 
views to each eye

Each eye sees an image of the virtual 
scene from that eye’s point of view 
in VR

This can be accomplished by rendering 
two views to one screen (Playstation 
VR, Google Daydream) or two 
dedicated displays (Oculus Rift, 
HTC Vive)

Top: Davis, Bryla, Benton, Oculus Rift in Action (2014)
Bottom: Oculus DK1 demo scene “Tuscanny”



Teardown of an Oculus Rift CV1

225Teardown of an Oculus Rift CV1 showing details of lenses and displays
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612 

https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612


Accounting for lens effects

226Image credit: Davis, Bryla, Benton, 
Oculus Rift in Action (2014)

Lenses bend light: the lenses in 
the VR headset warp the 
image on the screen, creating 
a pincushion distortion.

This is countered by first 
introducing a barrel 
distortion in the GPU shader 
used to render the image.  

The barrel-distorted image 
stretches back to full size 
when it’s seen through the 
headset lenses.



Accelerometer and electromagnetic sensors in the headset track 
the user’s orientation and acceleration.  VR software 
converts these values to a basis which transforms the scene.

Ex: WebVR API:
interface VRPose {

  readonly attribute Float32Array? position;

  readonly attribute Float32Array? linearVelocity;

  readonly attribute Float32Array? linearAcceleration;

  readonly attribute Float32Array? orientation;

  readonly attribute Float32Array? angularVelocity;

  readonly attribute Float32Array? angularAcceleration;

};

Sensors

227
Top: 6DoF (6 degrees of freedom) - Wikipedia
Bottom: Roll (Z), Pitch (X) and Yaw (Y) - Google Design

https://w3c.github.io/webvr/
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-position
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearacceleration
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-orientation
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularacceleration


Sensor fusion

Problem: Even the best accelerometer can’t detect all 
motion.  Over a few seconds, position will drift.

Solution: Advanced headsets also track position with 
separate hardware on the user’s desk or walls.

● Oculus Rift: “Constellation”, a desk-based IR 
camera, tracks a pattern of IR LEDs on the headset

● HTC Vive: “base station” units track user in room
● Playstation VR: LEDs captured by PS camera

The goal is to respond in a handful of milliseconds
to any change in the user’s position or orientation, 
to preserve presence.

228Top: Constellation through an IR-enabled camera (image credit: ifixit.com)
Bottom: HTC Vive room setup showing two base stations (image credit: HTC)

http://ifixit.com


Sensors - how fast is fast?

● To preserve presence, the rendered image must respond 
to changes in head pose faster than the user can perceive

● That’s believed to be about 20ms, so no HMD can have a 
framerate below 50hz

● Most headset display hardware has a higher framerate
○ The Rift CV1 is locked at 90hz
○ Rift software must exceed that framerate 
○ Failure to do so causes ‘judder’ as frames are lost
○ Judder leads to nausea, nausea leads to hate, hate leads to the 

dark side
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Dealing with latency: sensor prediction

A key immersion improvement is to predict the future basis.  
This allows software to optimize rendering.

● At time t, head pos = X, head velocity = V, head 
acceleration = A

● Human heads do not accelerate very fast
● Rendering a single frame takes dt milliseconds
● At t + dt, we can predict pos = X + Vdt + ½ Adt2

● By starting to render the world from the user’s predicted 
head position, when rendering is complete, it aligns with 
where there head is by then (hopefully).

Ex: The WebVR API returns predicted pose by default
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Advanced sensor tricks: 
detecting when the headset is in use

231

Rift picked up

Rift on head

Rift removed

Rift on desk

Normal use

This graph 
shows the 
`noise’ of an 
Oculus Rift 
DK2’s position 
when it’s on a 
desk or on a 
user’s head.

Desk: (approx.)
log(σ) < -10.5

Head: 
(approx.)
log(σ) < -4.5

Davis, Bryla, Benton, Pitfalls and Perils of VR: How to Avoid Them (2014)
http://rifty-business.blogspot.co.uk/2014/09/slides-from-our-pax-dev-2014-talk.html



Dealing with latency: ‘timewarp’

Another technique to deal with lost frames 
is asynchronous timewarp. 

● Headset pose is fetched immediately before frame 
display and is used to shift the frame on the display 
to compensate for ill-predicted head motion

232Image credit: Davis, Bryla, Benton, 
Oculus Rift in Action (2014)

Head velocity, 
acceleration captured; 
head pose predicted

Rendering 
first eye

Begin 
frame

Rendering 
second 
eye

Head pose captured 
again to increase 
accuracy (second eye)

Final head 
pose 
capture

Timewarp 
shifts 
image

Render!



Developing for VR

Dedicated SDKs
● HTC Vive
● Oculus Rift SDK

● C++
● Bindingsfor Python, Java

● Google Daydream SDK
● Android, iOS and Unity

● Playstation VR
● Playstation dev kit

233

General-purpose SDKs
● WebGL - three.js
● WebVR API

Higher-level game 
development
● Unity VR

https://www.htcvive.com/us/develop_portal
http://developer.oculus.com
https://developers.google.com/vr/daydream/overview
https://www.playstation.com/en-us/develop/
https://w3c.github.io/webvr/
https://unity3d.com/unity/multiplatform/vr-ar


“Sim sickness”

The Problem:
1. Your body says, “Ah, we’re sitting still.”
2. Your eyes say, “No, we’re moving!  It’s exciting!”
3. Your body says, “Woah, my inputs disagree!  I must have 

eaten some bad mushrooms.  Better get rid of them!”
4. Antisocial behavior ensues

The causes of simulation sickness (like motion sickness, but 
in reverse) are many.  Severity varies between individuals; 
underlying causes are poorly understood.
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Reducing sim sickness

The cardinal rule of VR:

1. Never take head-tracking control away from the user
2. Head-tracking must match the user’s motion
3. Avoid moving the user without direct interaction
4. If you must move the user, do so in a way that doesn’t 

break presence
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The user is in control of the camera.



How can you mitigate sim sickness?

Design your UI to reduce illness
● Never mess with the field of view
● Don’t use head bob
● Don’t knock the user around
● Offer multiple forms of camera control

○ Look direction
○ Mouse  + keyboard
○ Gamepad

● Try to match in-world character height 
and IPD (inter-pupilary distance) to that 
of the user

● Where possible, give the user a stable 
in-world reference frame that moves 
with them, like a vehicle or cockpit
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Hawken, by Meteor Entertainment (2014)



Further ways to reduce sim sickness

Design your VR world to reduce illness
● Limit sidestepping, backstepping, turning; never force the user to spin
● If on foot, move at real-world speeds (1.4m/s walk, 3m/s run)
● Don’t use stairs, use ramps
● Design to scale--IPD and character height should match world scale
● Keep the horizon line consistent, static and constant
● Avoid very large moving objects which take up most of the field of view
● Use darker textures
● Avoid flickering, flashing, or high color contrasts
● Don’t put content where they have to roll their eyes to see it
● If possible, build breaks into your VR experience
● If possible, give the user an avatar; if possible, the avatar body should react 

to user motion, to give an illusion of proprioception
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Classic user interfaces in 3D

Many classic UI paradigms 
will not work if you 
recreate them in VR

● UI locked to sides or corners of 
the screen will be distorted by 
lenses and harder to see

● Side and corner positions force 
the user to roll their eyes

● Floating 3D dialogs create a 
virtual plane within a virtual 
world, breaking presence

● Modal dialogs ‘pause’ the world
● Small text is much harder to read 

in VR

238Top: EVE Online (2003)
Bottom: Team Fortress (2007)



In-world UIs are evolving

Deus Ex Human Revolution (2011) Deus Ex Mankind Divided (2016)
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Increasingly, UI elements are being integrated into the virtual world



The best virtual UI is in-world UI

Top left: Call of Duty: Black Ops (2010) Top right: Halo 4 (2012)
Bottom left: Crysis 3 (2013) Bottom right: Batman: Arkham Knight (2015) 240



241Strike Suit Zero (2013)

http://www.youtube.com/watch?v=FYvpo_PDu4w


242Elite: Dangerous (2014)

http://www.youtube.com/watch?v=-ZvjH430C_o


Storytelling in games

The visual language of games is often 
the language of movies

● Cutscenes
● Angle / reverse-angle 

conversations
● Voiceover narration
● Pans
● Dissolves
● Zooms...

In VR, storytelling by moving the 
camera will not work well because 
the user is the camera.
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"It's a new communications medium. What is necessary is to 
develop a grammar and syntax. It's like film. When film was 
invented, no one knew how to use it. But gradually, a visual 
grammar was developed. Filmgoers began to understand how 
the grammar was used to communicate certain things. We have 
to do the same thing with this.“

Neal Stephenson, Interface, 1994

Call of Duty: Modern Warfare 3 (2012)
The player’s helicopter has been shot down; they emerge into 
gameplay, transitioning smoothly from passive to active.



In-game video content

Your virtual world may have screens of its own.  If it does, use them: they’re 
perfect for prerecorded 2D content.
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Drawing the user’s attention
When presenting dramatic content in 

VR, you risk the user looking 
away at a key moment.

● Use audio cues, movement or 
changing lighting or color to 
draw focus

● Use other characters in the 
scene; when they all turn to look 
at something, the player will too

● Design the scene to direct the 
eye

● Remember that in VR, you know 
when key content is in the 
viewing frustum
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 The Emperor’s New Groove (2000)
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Advice for a good UI
Always display relevant state—Primary application state 

should be visible to the user. For an FPS shoot-em-up, 
this means showing variables like ammo count and 
health. Combine audio and video for key cues such as 
player injury.

Use familiar context and imagery—Don’t make your users 
learn specialized terms so they can use your app. If 
you’re writing a surgery interface for medical training, 
don’t force medical students to learn about virtual 
cameras and FOVs.

Support undo/redo—Don’t penalize your users for clicking 
the wrong thing. Make undoing recent actions a primary 
user interface mode whenever feasible.

Design to prevent error—If you want users to enter a value 
between 1 and 10 in a box, don’t ask them to type; they 
could type 42. Give them a slider instead.

Build shortcuts for expert users—The feeling that you’re 
becoming an expert in a system often comes from 
learning its shortcuts. Make sure that you offer combos 
and shortcuts that your users can learn—but don’t 
require them.

Don’t require expert understanding—Visually indicate 
when an action can be performed, and provide useful 
data if the action will need context. If a jet fighter pilot 
can drop a bomb, then somewhere on the UI should be a 
little indicator of the number of bombs remaining. That 
tells players that bombs are an option and how many 
they’ve got. If it takes a key press to drop the bomb, 
show that key on the UI.

Keep it simple—Don’t overwhelm your users with useless 
information; don’t compete with yourself for space on 
the screen. Always keep your UI simple. “If you can’t 
explain it to a six-year-old, you don’t understand it 
yourself” (attributed to Albert Einstein).

Make error messages meaningful—Don’t force users to 
look up arcane error codes. If something goes wrong, 
take the time to clearly say what, and more important, 
what the user should do about it.

Abridged from Usability Engineering by Jakob Nielsen 
(Morgan Kaufmann, 1993)
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An unhelpful error message



Gesticular interfaces

Hollywood has been training us 
for a while now to use 
gesticular user interfaces.

A gesticular interface uses 
pre-set, intuitive hand and 
body gestures to control virtual 
representations of material 
data.

Many hand position capture 
devices are in development.
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248Johnny Mnemonic (1995)

http://www.youtube.com/watch?v=l0dYS2AKBN8


249Marvel’s Agents of S.H.I.E.L.D. (2013) S01 E13

http://www.youtube.com/watch?v=Gyfq0QBhPs4
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