
Advanced
Graphics

Beyond the desktop

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Antialiasing on the GPU

Hardware antialiasing can dramatically
improve image quality.
● The naïve approach is to supersample the image
● This is easier in shaders than it is in standard

software
● But it really just postpones the problem.

Several GPU-based antialiasing solutions
have been found.
● Eric Chan published an elegant polygon-based

antialiasing approach in 2004 which uses the GPU
to prefilter the edges of a model and then blends
the filtered edges into the original polygonal
surface. (See figures at right.)

Antialiasing on the GPU

One clever form of antialiasing is adaptive analytic
prefiltering.

● The precision with which an edge is rendered to the screen is
dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in the shader language by the methods
dFdx(F) and dFdy(F).

● These methods return the derivative with respect to X and Y of some
variable F.

● These are commonly used in choosing the filter width for antialiasing
procedural textures.

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002.

Particle systems on the GPU

Shaders extend the use of texture memory
dramatically. Shaders can write to texture
memory, and textures are no longer limited
to being two-dimensional planes of RGB
(A).
● A particle systems can be represented

by storing a position and velocity for
every particle.

● A fragment shader can render a particle
system entirely in hardware by using
texture memory to store and evolve
particle data.

Image by Michael Short

Tessellation shaders

One use of tessellation is in rendering
geometry such as game models or terrain
with view-dependent Levels of Detail
(“LOD”).
Another is to do with geometry what ray-

tracing did with bump-mapping: high-
precision realtime geometric deformation.

Tesselation is a new shader type
introduced in OpenGL 4.x. Tesselation
shaders generate new vertices within
patches, transforming a small number of
vertices describing triangles or quads
into a large number of vertices which
can be positioned individually.

jabtunes.com’s WebGL tessellation demo
Florian Boesch’s LOD terrain demo

http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

N
ot

e
ho

w
 tr

ia
ng

le
s a

re
 sm

al
l a

nd

de
ta

ile
d

cl
os

e
to

 th
e

ca
m

er
a,

 b
ut

be

co
m

e
ve

ry
 la

rg
e

an
d

co
ar

se
 in

th

e
di

st
an

ce
.

Tessellation shaders

How it works:
● You tell OpenGL how many vertices a single

patch will have:
glPatchParameteri(GL_PATCH_VERTICES, 4);

● You tell OpenGL to render your patches:
glDrawArrays(GL_PATCHES, first, numVerts);

● The Tessellation Control Shader specifies output
parameters defining how a patch is split up:
gl_TessLevelOuter[] and
gl_TessLevelInner[].
These control the number of vertices per primitive
edge and the number of nested inner levels,
respectively.

Vertex shader

Tessellation Control Shader

Tessellation primitive generator

Tessellation Evaluation Shader

Geometry shader

Fragment shader

...

Tessellation shaders

● The tessellation primitive
generator generates new
vertices along the outer edge
and inside the patch, as
specified by
gl_TessLevelOuter[] and
gl_TessLevelInner[].

Each field is an array. Within the
array, each value sets the number of
intervals to generate during
subprimitive generation.
Triangles are indexed similarly, but

only use the first three Outer and
the first Inner array field.

gl_TessLevelOuter[3] = 5.0

gl_TessLevelOuter[1] = 3.0

gl_TessLevelInner[1] = 4.0

g
l
_
T
e
s
s
L
e
v
e
l
I
n
n
e
r
[
0
]

=

3
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
0
]

=

2
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
2
]

=

2
.
0

Tessellation shaders
● The generated vertices are

then passed to the
Tesselation Evaluation
Shader, which can update
vertex position, color,
normal, and all other per-
vertex data.

● Ultimately the complete
set of new vertices is
passed to the geometry
and fragment shaders.

Image credit: Philip Rideout
http://prideout.net/blog/?p=48

OpenGL ES

OpenGL ES (“Embedded Subsystem”) is a subset of
OpenGL designed for constrained devices, like phones.
OpenGL ES 2.0 uses shaders to outsource work to the GPU,

which enables very fast 3D. The OpenGL ES framework
provides a client/server architecture which isolates the CPU
from expensive graphics operations.

Architecture of an OpenGL ES application. From developer.apple.com

OpenGL ES

Widespread and evolving support
OpenGL ES Android iOS

OpenGL ES 1.0 and 1.1 Android 1.0 and higher Apple iOS for iPad, iPhone,
and iPod Touch

OpenGL ES 2.0 Android 2.2 (API level 8)
and higher

Apple iOS 5 or later

OpenGL ES 3.0 Android 4.3 (API level 18) Apple iOS 7 or later

Gears Demo (Khronos Group)Shadowgun (Android) Physics Demo (iOS)

Key traits of OpenGL ES:
● Very small memory footprint
● Very low power consumption
● Smooth transitions from

software rendering on low-end
devices to hardware rendering
on high-end; the developer
should never have to worry

● Widespread industry adoption
● “Easy to use” and “well

documented”, according to the
authoring body

Designed for Mobile

OpenGL ES is a subset of OpenGL

Includes
● Vertex shaders
● Fragment shaders
● Vertex buffers
● Textures
● Framebuffers
● Render states
● …

Does not include
● Geometry shaders
● Tessellation shaders
● Vertex Array Objects
● Multiple render targets
● Floating-point textures
● Compressed textures
● FS depth writes
● …

OpenGL ES - A minimal Android sample
public class OpenGLES20Activity extends Activity {

 private GLSurfaceView mGLView;

 @Override
 public void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);

 // Create a GLSurfaceView instance and set it
 // as the ContentView for this Activity.
 mGLView = new MySurfaceView(this);
 setContentView(mGLView);
 }
}

class MySurfaceView extends GLSurfaceView {
 public MyGLSurfaceView(Context context){
 super(context);
 // Set the Renderer for drawing on the GLSurfaceView
 setRenderer(new MyRenderer());
 }
}

public class MyRenderer implements GLSurfaceView.Renderer {
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // Set the background frame color
 GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 }
 public void onDrawFrame(GL10 unused) {
 // Redraw background color
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
 }
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 }
}

Source: Android.com, “Building an OpenGL ES Environment”
http://developer.android.com/training/graphics/opengl/environment.html

WebGL

WebGL is a port of OpenGL ES to the Web.
● It runs on Windows, Mac, and Linux
● It runs on desktop and mobile
● There’s no plugins to install
● It runs on the GPU

...and all it costs you is…

...you have to write all your code in JavaScript.
www.playtankworld.com

WebGL

Demo: WebGL Water by Evan Wallace

WebGL adoption
WebGL support by browser.

Data gathered Nov-Dec 2013
 Source: caniuse.com/webgl

IE Firefox Chrome Safari Opera iOS Safari Opera Mini
Android
Browser

Blackberry
Browser

Opera
Mobile

Chrome for
Android

Firefox for
Android IE Mobile

4 versions
back

7.0:
None

22.0:
Partial 27.0: Full

5.0:
None

12.0:
Partial

4.0-4.1:
None

2.3:
None

11.1:
None

3 versions
back

8.0:
None

23.0:
Partial 28.0: Full

5.1:
Partial

12.1:
Partial

4.2-4.3:
None

3.0:
None

11.5:
None

2 versions
back

9.0:
None

24.0:
Partial 29.0: Full

6.0:
Partial 15.0: Full

5.0-5.1:
None

4.0:
None

12.0:
Partial

Previous
version

10.0:
None

25.0:
Partial 30.0: Full

6.1:
Partial 16.0: Full

6.0-6.1:
None

4.1:
None 7.0: None

12.1:
Partial

Current
11.0:
Full

26.0:
Partial 31.0: Full

7.0:
Partial 17.0: Full

7.0:
None

5.0-7.0:
None

4.2-4.3:
None 10.0: Full 16.0: Full

31.0:
Full

25.0:
Full

10.0:
None

WebGL - Creating a Canvas

<html>
 <style type="text/css">
 canvas { background: blue; }
 </style>
 <script type="text/javascript"
 src="https://www.khronos.org/registry/webgl/sdk/demos/common/webgl-utils.js ">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 var canvas = document.getElementById("gl-canvas");
 var gl = WebGLUtils.setupWebGL(canvas);
 if (!gl) { alert("WebGL isn’t available"); }
 gl.viewport(0, 0, canvas.width, canvas.height);
 gl.clearColor(0.4, 0.8, 0.0, 1.0);
 gl.clear(gl.COLOR_BUFFER_BIT);
 }
 </script>
 <body>
 <canvas id="gl-canvas" width="512" height="512">
 Your browser doesn’t support HTML5’s
 Canvas element.
 </canvas>
 </body>
</html>

WebGL - Installing shaders
function getShader(gl, id) {
 var script = document.getElementById(id);
 var shader;
 if (script.type == "x-shader/x-vertex") {
 shader = gl.createShader(gl.VERTEX_SHADER);
 } else if (script.type == "x-shader/x-fragment")
{
 shader = gl.createShader(gl.FRAGMENT_SHADER);
 }
 gl.shaderSource(shader, script.text);
 gl.compileShader(shader);
 if (!gl.getShaderParameter(
 shader, gl.COMPILE_STATUS)) {
 alert(gl.getShaderInfoLog(shader));
 return null;
 }
 return shader;
}

<script id="shader-vs"
 type="x-shader/x-vertex">
 // GLSL vertex shader...
</script>

<script id="shader-fs"
 type="x-shader/x-fragment">
 // GLSL fragment shader...
</script>

To avoid cross-site security
issues, shaders are often inlined
into the HTML using the x-
shader MIME types:

WebGL libraries abound

A number of libraries can ease the boilerplate:
● Three.js, used in many of the Chrome Experiments

demos
● CopperLicht, a 3D world editor
● PhiloGL, focused on data visualization
● GLGE, used for early prototypes of Zygote Body
● SceneJS, highly detailed 3D visualisation
You can even pretend you’re not using Javascript at all:
● GwtGL, a GWT (Java-to-Javascript) WebGL wrapper
● X3Dom, a set of ‘HTML’ tags for 3D and the spiritual

descendant of VRML

WebGL demos abound:
● NVIDIA’s Vertex Buffer Object demo
● Jellyfish!
● “Sproingies”
● Dr. Thorsten Thormählen’s Phong shaders demo
● Realtime ray-tracing on the GPU in WebGL

WebGL Demos

Augmented Reality (one example)

CastAR is an upcoming
augmented reality system in
which the wearer wears two
tiny, lightweight projectors
on their glasses. These
projectors project onto a
retroreflective material,
which reflects light only to
the wearer of the glasses,
creating an illusory 3D
volume within the canvas.

Virtual Reality: The Sword of Damocles
(1968)

In 1968, Harvard Professor Ivan Sutherland,
working with his student Bob Sproull, invented the
world’s first head-mounted display, or HMD. Their
device combined three-dimensional binocular
displays with head-tracking technology and was
capable of placing the user in a virtual “room”, a
wire-frame enclosure which would re-orient and
update as the user moved their head.

The head-mounted display weighed so much that the
device had to be suspended from the ceiling with
heavy scaffolding. The way it hung perilously
above the user gave rise to its nickname, “The
Sword of Damocles”.

Virtual Reality: The Oculus Rift (2014)

The Oculus Rift is a head-
mounted display being
produced by OculusVR, Inc.
It should be released in 2014.
The Rift combines a

lightweight display,
carefully-positioned lenses,
and a sensitive head-tracker
to produce an immersive
virtual reality experience.

How the Oculus Rift works

The Rift locks two
adjustable lenses in front of
an LCD display (1280x800,
with an HD version
planned.)
The position and orientation

of the lenses can be queried
from software.

Images: http://www.pcauthority.com.au

How the Oculus Rift works

Applications targeting the Rift as a
display generate a single 1280x800
image which is the built from two
640x800 images. Rendering the
two side-by-side on the same
screen leads the wearer’s brain to
composite them into a single
image.
Varying the camera position and

angle used to generate the two
images delivers a 3D effect.

Image: Bryla and Davis, Oculus Rift in Action,
Manning Press, 2014

How the Oculus Rift works

Lenses bend light: the lenses
in the Rift warp the image on
the screen, creating a
pincushion distortion.
This is countered by

introducing a barrel
distortion in the shader used
to render the image.

Image: Bryla and Davis, Oculus Rift in Action,
Manning Press, 2014

Putting the Rift to work

NASA has built an
integrated telepresence
experience using a Kinnect 2
and an Oculus Rift.

They hope that despite high
latency, by using gestures to
indicate intent, earth-bound
users could remotely control
robots in real time in space.

OpenCL

OpenCL, the Open Computing Language, exposes the
computing power of the GPU to non-graphical programs.

From the Khronos Group site:
“OpenCL™ is the first open, royalty-free standard for cross-

platform, parallel programming of modern processors found in
personal computers, servers and handheld/embedded devices.”
“OpenCL 2.0 defines an enhanced execution model and a subset of

the C11 and C++11 memory model, synchronization and atomic
operations.”

Versions even work with OpenGL ES and WebGL: WebCL
enables high-powered computing in JavaScript.

OpenCL

Designed to:
● Support parallel execution on single or

multiple processors
● GPU, CPU, GPU + CPU or multiple GPUs

● Offer Desktop and Handheld Profiles
● Offer shared virtual memory space
● Work with graphics APIs such as OpenGL
● Accelerate those same APIs--OpenGL uses

OpenCL now

To work with OpenCL you’ll need to download and
install drivers specific to your OS, CPU and GPU.

● Cross-platform portability is an ongoing project
goal, dependent on adoption.

OpenCL ray tracer
https://code.google.com/p/ocltoys/

Realtime particle fluids - FSU
Ian Johnson, Gordon Erlebacher
http://enja.org/2011/03/31/particles-in-
bge-improved-code-collisions-and-hose/

CPU vs GPU – an object demonstration

“NVIDIA: Adam and Jamie explain parallel processing on the GPU”
http://www.youtube.com/watch?v=ZrJeYFxpUyQ

References

WebGl:

http://khronosgroup.github.io/siggraph2012course/CanvasCSSAndWebGL/webgl.html

https://code.google.com/p/gwtgl/

http://www.mathematik.uni-marburg.
de/~thormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html
http://www.zygotebody.com

Particle systems:

http://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php?print=1

Tessellation:

http://prideout.net/blog/?p=48

http://antongerdelan.net/opengl/tessellation.html

OpenCL:

http://s08.idav.ucdavis.edu/munshi-opencl.pdf

https://www.khronos.org/opencl/

