
Advanced Graphics

OpenGL and Shaders
Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Today’s technologies
Java

● Common, re-usable language; well-
designed

● Steadily increasing popularity in
industry

● Weak but evolving 3D support
C++

● Long-established language
● Long history with OpenGL
● Long history with DirectX
● Losing popularity in some fields

(finance, web) but still strong in
others (games, medical)

JavaScript (seriously!)
● WebGL is surprisingly popular

OpenGL
● Open source with many

implementations
● Well-designed, old, and still evolving
● Fairly cross-platform

DirectX/Direct3d (Microsoft)
● Less well-designed (IMHO)
● Microsoft™ only
● DX 10 required Vista!
● Dependable updates

Mantle (AMD)
● Targeted squarely at game developers
● AMD-specific

Higher-level commercial libraries
● RenderMan
● AutoDesk / SoftImage

OpenGL

OpenGL is…
● hardware-independent
● operating system independent
● vendor neutral
OpenGL is a state-based renderer
● many settings are configured before passing in data;

rendering behavior is modified by existing state
● most state is stored in custom graphics hardware
● this is very different from the OOP model, where

data would carry its own state

OpenGL

OpenGL is platform-independent, but
implementations are platform-specific and often rely
on native libraries
● Great support for Windows, Mac, linux, etc
● Support for mobile devices with OpenGL-ES

● Android, iOS (but not Windows Phone)
Accelerates common 3D graphics operations
● Clipping (for primitives)
● Hidden-surface removal (Z-buffering)
● Texturing, alpha blending (transparency)
● NURBS and other advanced primitives (GLUT)

OpenGL in Java: JOGL

JOGL is the Java binding for OpenGL.
JOGL apps can be deployed as applications or as applets, making it suitable for
educational demos, cross-platform applications, and the web.

● If the user has installed the latest Java, of course.
● And if you jump through Oracle’s authentication hoops.
● And… let’s be honest, 1998 called, it wants its applets back.

If you’re only targeting the web, consider using WebGL instead.

In JOGL, everything renders in a GLCanvas instance, which is typically attached
to an AWT Frame:

JOGL shaders in action.
Image from Wikipedia

Frame frame = new Frame("Hello Square");
GLCanvas canvas = new GLCanvas();
frame.add(canvas);
canvas.addGLEventListener(new HelloSquareRenderer());

Minimal JOGL: Hello Square
public class HelloSquareRenderer implements GLEventListener {

 @Override
 public void init(GLAutoDrawable glDrawable) {
 GL4 gl = glDrawable.getGL().getGL4();
 gl.glClearColor(0.2f, 0.4f, 0.6f, 0.0f);

 createAndBindVertexBuffer(gl);
 fillCurrentVertexBuffer(gl);

 gl.glEnableVertexAttribArray(0);
 gl.glVertexAttribPointer(0, 2, GL.GL_FLOAT, false, 0, 0);
 }

 private void createAndBindVertexBuffer(GL4 gl) {
 int[] arrays = {0};
 gl.glGenBuffers(1, arrays, 0);
 gl.glBindBuffer(GL.GL_ARRAY_BUFFER, arrays[0]);
 }

 private void fillCurrentVertexBuffer(GL4 gl) {
 FloatBuffer vertices = Buffers.newDirectFloatBuffer(new float[] {
 -0.6f, 0.5f, 0.4f, 0.5f, -0.6f, -0.5f, // First triangle
 0.6f, -0.5f, 0.6f, 0.5f, -0.4f, -0.5f, // Second triangle
 });
 gl.glBufferData(GL.GL_ARRAY_BUFFER,
 Float.SIZE * 2 * 2 * 3, vertices, GL.GL_STATIC_DRAW);
 }

 @Override
 public void display(GLAutoDrawable glDrawable) {
 GL4 gl = glDrawable.getGL().getGL4();
 gl.glClear(GL.GL_COLOR_BUFFER_BIT);
 gl.glDrawArrays(GL.GL_TRIANGLES, 0, 6);
 }
}

This is not good code! It doesn’t clean up after itself and it makes some very coarse assumptions about the shader. Caveat coder.

Behind the scenes

Two players:
● The CPU, your processor and friend
● The GPU (Graphical Processing Unit) or equivalent software

The CPU passes buffers of data--typically vertices and data about
them--to the GPU.
● The GPU processes the vertices according to the state that has been

set; for example, “render a triangle for every trio of vertices”.
● The GPU takes in streams of vertices, colors, texture coordinates and

other data; constructs polygons and other primitives; then uses its
shaders to draw the primitives to the screen pixel-by-pixel.

This process is called the rendering pipeline.
Implementing the rendering pipeline is a joint effort between you and the
GPU.

The OpenGL rendering pipeline

An OpenGL application assembles
sets of primitives, transforms and
image data, which it passes to
OpenGL.
GL processes every vertex in the

primitives, computing the lighting
and position of each one.
GL then interpolates the fragments

of every pixel covered by every
primitive between the vertices,
shading each fragment.

Primitives and image data

Alpha, stencil, depth tests
Framebuffer blending

Transform and lighting

Primitive assembly

Clipping

Texturing

Fog, antialiasing

Application

Vertex

Geometry

Fragment

Framebuffer

The OpenGL rendering pipeline
(simplified view)

JOGL’s default shaders

If not otherwise instructed, JOGL behaves as though it has a
default vertex and fragment shader, a legacy of the old fixed-
function pipeline. They act like this:

#version 330

in vec4 position;

void main() {

 gl_Position = position;

}

#version 330

void main() {

 gl_FragColor =

 vec4(1, 1, 1, 1);

}

These aren’t “default” shaders; there’s no such thing. This is how the vestigial code of the fixed-funtction pipeline
behaves.

Anatomy of a shader

#version 330

layout(location = 0)in vec4 vPosition;

uniform mat4 modelToScreen;

void main() {

 gl_Position = modelToScreen * vPosition;

}

GLSL
version

Input:
vertex data
starting at
position 0

Input: a
4x4 matrix

Output: vertex input
transformed by matrix input

(Briefly. More details next lecture.)

What will you have to write?

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

1. Passing geometry to OpenGL

Let’s revisit how our Hello Square program wrote geometry.
First, we allocated a vertex buffer:
 private void createAndBindVertexBuffer(GL4 gl) {

 int[] arrays = {0}; // Target for new buffer name

 gl.glGenBuffers(1, arrays, 0); // Allocate new name

 gl.glBindBuffer(GL.GL_ARRAY_BUFFER, arrays[0]); // Bind ARRAY_BUFFER to name

 }

Then we filled the buffer with vertex coordinates:
 private void fillCurrentVertexBuffer(GL4 gl) {

 FloatBuffer vertices = Buffers.newDirectFloatBuffer(new float[] {

 -0.6f, 0.5f, 0.4f, 0.5f, -0.6f, -0.5f, // First triangle

 0.6f, -0.5f, 0.6f, 0.5f, -0.4f, -0.5f, // Second triangle

 });

 gl.glBufferData(GL.GL_ARRAY_BUFFER, // Fill ARRAY_BUFFER with data

 Float.SIZE * 2 * 2 * 3, vertices, GL.GL_STATIC_DRAW);

 }

Passing geometry to OpenGL

We could have made the vertices more interesting:
 private void fillCurrentVertexBuffer(GL4 gl) {
 final double TWO_PI_OVER_360 = 2 * PI / 360;
 FloatBuffer vertices = Buffers.newDirectFloatBuffer(360 * 3 * 2);
 for (int i = 0; i < 360; i++) {
 double scale = 0.7 + 0.1 * sin(i * 24 * TWO_PI_OVER_360);
 vertices.put((float) (cos(i * TWO_PI_OVER_360) * scale));
 vertices.put((float) (sin(i * TWO_PI_OVER_360) * scale));
 scale = 0.7 + 0.1 * sin((i + 1) * 24 * TWO_PI_OVER_360);
 vertices.put((float) (cos((i + 1) * TWO_PI_OVER_360) * scale));
 vertices.put((float) (sin((i + 1) * TWO_PI_OVER_360) * scale));
 vertices.put(0);
 vertices.put(0);
 }
 vertices.rewind();
 gl.glBufferData(GL.GL_ARRAY_BUFFER, Float.SIZE * 360 * 3 * 2,
 vertices, GL.GL_STATIC_DRAW);
 }

Passing geometry to OpenGL
For that matter, we could make the vertices 3D:
static final float[][] CORNERS = {

 {-0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f,-0.8f}, {-0.8f, 0.8f,-0.8f},

 {-0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f,-0.8f}, {-0.8f,-0.8f,-0.8f},

};

static final int[] INDICES = { 0, 1, 2, 3, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 4 };

private void fillCurrentVertexBuffer(GL4 gl) {

 FloatBuffer vertices = Buffers.newDirectFloatBuffer(INDICES.length * 3);

 for (int index : INDICES) { vertices.put(CORNERS[index]); }

 vertices.rewind();

 int numBytes = Floats.BYTES * INDICES.length * 3;

 gl.glBufferData(

 GL.GL_ARRAY_BUFFER, numBytes, vertices, GL.GL_STATIC_DRAW);

}

// ...

gl.glDrawArrays(GL.GL_LINE_STRIP, 0, INDICES.length);

...and it’d be boring, because we have no 3D.

Passing geometry to OpenGL

Vertex buffer objects store arrays of vertex
data--positional or descriptive. With a vertex
buffer object (“VBO”) you can compute all
vertices at once, pack them into a VBO, and pass
them to OpenGL en masse to let the GPU
processes all the vertices together.
To group different kinds of vertex data together,

you can serialize your buffers into a single VBO,
or you bind and attach them to a Vertex Array
Objects. Each vertex array object (“VAO”) can
contain multiple VBOs.
Although not required, VAOs help you to

organize and isolate the data in your VBOs.

Vertex Array
Object

Vertex Buffer
(positions)

Vertex Buffer
(colors)

Vertex Buffer
(normals)

Vertex Buffer
(texture info)

Memory management:
Lifespan of an OpenGL object

Most objects in OpenGL are created and deleted explicitly. Because these entities
live in the GPU, they’re outside the scope of Java’s garbage collection.
The typical creation and deletion of an OpenGL object look like this:

int createAndBindVBO() {

 int[] names = new int[1];

 gl.glGenBuffers(1, names, 0);
 gl.glBindBuffer(GL.GL_ARRAY_BUFFER, names[0]);
 return names[0];
}

// Work with your object

void deleteVBO(int vboName) {
 gl.glDeleteBuffers(1, vboName, 0);
}

2. Getting some perspective

To add 3D perspective to our flat model, we face three
challenges:
● Compute a 3D perspective matrix
● Pass it to OpenGL, and on to the GPU
● Apply it to each vertex
To do so we’re going to need to add apply our perspective
matrix in the shader, which means we’ll need to replace
JOGL’s default shaders with our own.

3D perspective

JOGL provides utilities to build a perspective matrix. The
helper class PMVMatrix includes a method glGetFrustum()
which will assemble a 4x4 grid of floats suitable for passing
to OpenGL for perspective.
Or you can build your own:

α: Field of view, typically
50°

ar: Aspect ratio of width
over height

NearZ: Near clip plane

FarZ: Far clip plane

P =

Applying the transform in the shader

Next we need to modify our shader to transform our vertices
by our perspective matrix.
This shader takes a matrix and applies it to each vertex:

#version 330

layout(location = 0)in vec4 vPosition;

uniform mat4 modelToScreen;

void main() {

 gl_Position = modelToScreen * vPosition;

}

Installing a shader in OpenGL
String[] vertexShader = ...; // Lines of code of the shader

int[] vertexLengths = ...; // Lengths of each line

int program = gl.glCreateProgram();

int vsName = gl.glCreateShader(GL4.GL_VERTEX_SHADER);

gl.glShaderSource(vsName, 1, vertexShader, vertexLengths, 0);

gl.glCompileShader(vsName);

gl.glAttachShader(program, vsName);

gl.glLinkProgram(program);

gl.glValidateProgram(program);

gl.glUseProgram(program);

Output from using the code on this slide to apply the shader on the previous slide
with the matrix from three slides ago to the cube from seven slides earlier.

Depth buffer bits

OpenGL uses the Z-Buffer polygon scan
conversion method of hidden-surface
removal.
Depth buffer precision is affected by the

values specified for zNear and zFar . The
greater the ratio of zFar to zNear, the less
effective the depth buffer will be at
distinguishing between surfaces that are near
each other, because fewer bits will be
available to express the larger dynamic range.
According to the OpenGL documentation,
“Roughly log2(zFar / zNear) bits of depth

buffer precision are lost.” N
ea

r =
 0

.0
01

Fa
r =

 1
00

N
ea

r =
 0

.0
1

Fa
r =

 2
0

N
ea

r =
 0

.1
Fa

r =
 1

0

3. Lighting and Shading

You’ll recall the equation for diffuse
lighting, which models how light
scatters more brightly off a surface if
it strikes that surface full-on rather
than at a glancing angle.

To model diffuse lighting with
OpenGL, we’ll need to compute the
normal to our surface and the vector
from each point to the light.

Diffuse lighting:
 d = kD(N•L)

E

P

L

N

Binding different data types with a VAO

We’ll pass both coordinate data and normal data to OpenGL.
To bind the two arrays of floats together, we build a Vertex Array Object:

int vertexArrayId = new int[1];
gl.glGenVertexArrays(1, vertexArrayId, 0);
gl.glBindVertexArray(vertexArrayId[0]);

We bind a buffer for vertex data, fill it, and then bind another for normals:
gl.glBindBuffer(GL.GL_ARRAY_BUFFER, vertexBufferIds[0]);
gl.glBufferData(GL.GL_ARRAY_BUFFER,
 Floats.BYTES * DATA_SIZE, vertices, GL.GL_STATIC_DRAW);
gl.glEnableVertexAttribArray(0);
gl.glVertexAttribPointer(0, 3, GL.GL_FLOAT, false, 0, 0);

(Repeat for normals, enabling vertex attrib array / pointer 1)
Lastly we can unbind the buffers and work only with the bound vertex array:

gl.glBindBuffer(GL.GL_ARRAY_BUFFER, 0);

Diffuse lighting in a shader

Diffuse lighting:
 d = kD(N•L)

Expressed as a
shader

#version 330
uniform mat4 modelToScreen;
layout(location = 0)in vec4 vPos;
layout(location = 1)in vec4 vNormal;
out float diffuse;

void main() {
 vec3 L = vec3(10, 10, 10);
 gl_Position = modelToScreen * vPos;
 diffuse = dot(vNormal, normalize(L - vPos));
}

#version 330

in float diffuse;
out vec4 color;

void main() {
 vec3 purple = vec3(0.8, 0.8, 1);
 color = vec4(purple * diffuse, 1);
}

Putting it into practice:
Simple parametric surfaces
FloatBuffer vertexData = new...
FloatBuffer colorData = new...
public void vertex(GL gl,
 float x, float y, float z) {
 vertexData.add(x, y, z);
 colorData.add(
 (x+1)/2.0f,
 (y+1)/2.0f,
 (z+1)/2.0f);
}

public void sphere(
 GL gl, double u, double v) {
 vertex(gl, cos(u)*cos(v),
 sin(u)*cos(v),
 sin(v));
}

for (double u=0; u<=2*PI; u+=0.1) {
 for (double v=0; v<=PI; v+=0.1) {
 sphere(gl, u, v);
 sphere(gl, u+0.1, v);
 sphere(gl, u+0.1, v+0.1);
 sphere(gl, u, v+0.1);
 }
}

Animating a parametric surface

The animation at right
shows the linear
interpolation between
four parametric surface
functions.
● Colors are by XYZ.
● For surface functions A, B,

each grid point is
interpolated as
P(i, j) = (1 - t)A(i, j) + (t)B(i, j)

Using OpenGL to accelerate ray-tracing

To accelerate first raycast, don’t
raycast: use existing hardware.
● Use hardware rendering (eg

OpenGL) to write to an offscreen
buffer.

● Set the color of each primitive
equal to a pointer to that primitive.

● Render your scene in gl with z-
buffering and no lighting.

● The ‘color’ value at each pixel in
the buffer is now a pointer to the
primitive under that pixel.

Anatomy of a rendering pipeline

1) You’ll generally define your geometry in local
space. The vertices and coordinates of a surface
are specified relative to a local basis and origin.

This encourages re-use and replication of
geometry; it also saves the tedious math of
storing rotations and other transformations within
the vertices of the shape itself.

This means that changing the position of a
highly complex object requires only changing a
4x4 matrix instead of recalculating all vertex
values.

World space

Viewing space

3D screen space

2D display space

Local space

Anatomy of a rendering pipeline

2) You’ll want to transform vertices and surface
normals from local to world space for operations
like intersection, world-space clipping, and
shading with lights positioned in the world.

A series of matrices are concatenated
together to form the single transformation which
is applied to each vertex. The pipeline is
responsible for associating the state that
transforms each group of vertices with the actual
vertex values themselves (most often via a vertex
shader in OpenGL).

World space

Viewing space

3D screen space

2D display space

Local space

Anatomy of a rendering pipeline

3) Rotate and translate the geometry from world
space to viewing or camera space.

At this stage, all vertices are positioned
relative to the point of view of the camera. (The
world really does revolve around you!)

For example, a cube at (10,000, 0, 0) viewed
from a camera (9,999, 0, 0) would now have
relative position (1, 0, 0). Rotations would have
similar effect.

This makes operations such as clipping and
hidden-object removal much faster.

Viewing space

World space

3D screen space

2D display space

Local space

Anatomy of a rendering pipeline

4) Perspective: Transform the viewing frustum
into an axis-aligned box with the near clip plane
at z=0 and the far clip plane at z=1. Coordinates
are now in 3D screen space.

This transformation is not affine: angles will
distort and scales change.

Hidden-surface removal can be accelerated here by
clipping objects and primitives against the viewing frustrum.
Depending on implementation this clipping could be before
transformation or after or both.

3D screen space

World space

Viewing space

2D display space

Local space

Anatomy of a rendering pipeline

5) Collapse the box to a plane. Rasterize
primitives using Z-axis information for depth-
sorting and hidden-surface-removal.

Clip primitives to the screen.

Scale raster image to the final raster buffer
and rasterize primitives.

2D display space

World space

Viewing space

3D screen space

Local space

Recap: sketch of a rendering pipeline

Object definition

Local space

Scene composition
Viewing frame definition
Lighting definition

World space

Backface culling
Viewing frustum culling
HUD definition

Viewing

space

Hidden-surface removal
Scan conversion
Shading

3D screen space

Image

Display space

L2W W2V

V2S

S2D

P’ = S2D • V2S • W2V • L2W
• PL

P’ = S2D • V2S • W2V • L2W • PL
Each of these transforms can be
represented by a 4x4 matrix.

Recommended reading

The OpenGL Programming Guide
● Some folks also favor The OpenGL Superbible for

code samples and demos
● There’s also an OpenGL-ES reference, same series

The Graphics Gems series by Glassner et al
● All the maths you’ve already forgotten

The NeonHelium online OpenGL tutorials
● http://nehe.gamedev.net/

