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Procedural volumetric texture

By mapping 3D coordinates to colors, we can create 
volumetric texture.  The input to the texture is local model 
coordinates; the output is color and surface characteristics.
For example, to produce wood-grain texture, trees grow 

rings, with darker wood from earlier in the year and lighter 
wood from later in the year.
● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood + 
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1



Adding realism

The teapot on the previous slide doesn’t look very wooden, 
because it’s perfectly uniform.  One way to make the surface 
look more natural is to add a randomized noise field to f(P):
f(P) = (XP

2+ZP
2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in 
space to scalar values chosen at random.

For natural-looking results, use 
Perlin noise, which interpolates 
smoothly between noise values.



Perlin noise

Perlin noise (invented by Ken Perlin) is a method for 
generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom 

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended 

arbitrarily in space, yet cached deterministically

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker



Perlin noise 1

Perlin noise caches ‘seed’ random values on a grid 
at integer intervals.  You’ll look up noise values at 
arbitrary points in the plane, and they’ll be 
determined by the four nearest seed randoms on the 
grid.
Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in 
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)} 
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html



Perlin noise 2

For each of the four corners, take the dot product of the 
random seed vector with the vector from that corner to 
(x, y).  This gives you a unique scalar value per corner.
● As (x, y) moves across this cell of the grid, the 

values of the dot products will change smoothly, 
with no discontinuity.

● As (x, y) approaches a grid point, the contribution 
from that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a 
range close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
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Perlin noise 3

Now we take a weighted average of LL, LR, UL, UR.  
Perlin noise uses a weighted averaging function chosen 
such that values close to zero and one are moved closer 
to zero and one, called the ease curve:

S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:

noise(x, y) =
 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))

Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’



Tuning noise 

Texture frequency
1 → 3

Noise frequency
1 → 3

Noise amplitude
1 → 3



Normal mapping

Normal mapping applies the principles of texture mapping 
to the surface normal instead of surface color.

In a sense, the ray tracer 
computes a trompe-l’oeuil 
image on the fly and 
‘paints’ the surface with 
more detail than is actually 
present in the geometry.

The specular and diffuse shading of the 
surface varies with the normals in a dent on 
the surface.
If we duplicate the normals, we don’t have 

to duplicate the dent.



Normal mapping



Constructive Solid 
Geometry (CSG) builds 
complicated forms out of 
simple primitives.

These primitives are 
combined with basic 
boolean operations: add, 
subtract, intersect.

CSG figure by Neil Dodgson

Constructive Solid Geometry



CSG models are easy to ray-trace but difficult to 
polygonalize
● Issues include choosing polygon boundaries at edges; 

converting adequately from pure smooth primitives to 
discrete (flat) faces; handling ‘infinitely thin’ sheet 
surfaces; and others.

● This is an ongoing research topic.
CSG models are well-suited to machine milling, automated 
manufacture, etc
● Great for 3D printers!

Constructive Solid Geometry



CSG surfaces can be described by a binary 
tree, where each leaf node is a primitive and 
each non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 
4

Constructive Solid Geometry



Three operations:
1. Union   2. Intersection      3. Difference

Constructive Solid Geometry



For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points 

where r enters of leaves A or B.
● You can think of each intersection as 

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t 
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

Constructive Solid Geometry



Each boolean operation can be 
modeled as a state machine.
For each operation, retain 
those intersections that 
transition into or out of
the critical state(s).

● Union: 
{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and 
B

In A In B

Not in A 
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A

Ray-tracing CSG models



● Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B  Was In A  Is In A  Was In B  Is In B

 t1  No  Yes  No  No

 t2  Yes  Yes  No  Yes

 t3  Yes  No  Yes  Yes

 t4  No  No  Yes  No

difference = 
((wasInA != isInA) &&
 (!isInB)&&(!wasInB)) 
|| 
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models



Difference Intersection

CSG in action



The matrix stack design pattern

A common design pattern in 3D graphics, especially when 
objects can contain other objects, is to use matrix stacks to 
store stacks of matrices.  The topmost matrix is the product 
of all matrices below.

● This allows you to build a local frame of reference—
local space—and apply transforms within that space.

● Remember: matrix multiplication is associative but not commutative.
● ABC = A(BC) = (AB)C ≠ ACB ≠ BCA

Pre-multiplying matrices that will be used more 
than once is faster than multiplying many 
matrices every time you render a primitive.

A

AB

ABC



Matrix stacks and scene graphs

Matrix stacks are designed for nested relative 
transforms.
pushMatrix();
  translate(0,0,-5);
  pushMatrix();
    rotate(45,0,1,0);
    render();
  popMatrix();
  pushMatrix();
    rotate(-45,0,1,0);
    render();
  popMatrix();
popMatrix();

identity

T

identity

T

T • R1

identity

T

T • R2

identity

T

…

render your 
geometry here



Scene graphs

A scene graph is a tree of scene 
elements where a child’s transform 
is relative to its parent.

The final transform of the child is 
the ordered product of all of its 
ancestors in the tree.

Matrix stacks and depth-first 
traversal of your scene graph: two 
great tastes that go great together! MfingerToWorld = 

(Mperson • Mtorso • Marm • Mhand • Mfinger)

Person

Torso

Arm Arm Leg …

Hand

Finger

…

…

…



Your scene graph and you

Many 2D GUIs today favor an event model in which events ‘bubble up’ 
from child windows to parents.  This is sometimes mirrored in a scene 
graph.
● Ex: a child changes size, changing the size of the parent’s bounding box
● Ex: the user drags a movable control in the scene, triggering an update event

If you do choose this approach, consider using the Model View Controller 
or Model View Presenter design pattern.  3D geometry objects are good 
for displaying data but they are not the proper place for control logic.
● For example, the class that stores the geometry of the rocket should not be the 

same class that stores the logic that moves the rocket.
● Always separate logic from representation.



Great for…
● Collision detection between scene 

elements
● Culling before rendering
● Accelerating ray-tracing

Your scene graph and you

A common optimization derived 
from the scene graph is the 
propagation of bounding volumes.

Nested bounding volumes allow 
the rapid culling of large portions 
of geometry
● Test against the bounding volume 

of the top of the scene graph and 
then work down.



Bounding volumes help to quickly accelerate volumetric tests, 
such as “does the ray hit the cow?”

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders 
● common in early FPS games

Speed up ray-tracing with bounding volumes



Hierarchies of bounding 
volumes allow early discarding 
of rays that won’t hit large 
parts of the scene.

● Pro: Rays can skip 
subsections of the hierarchy

● Con: Without spatial 
coherence ordering the 
objects in a volume you hit, 
you’ll still have to hit-test 
every object

Bounding volumes in hierarchy



Split space into cells and 
list in each cell every 
object in the scene that 
overlaps that cell.

● Pro: The ray can skip 
empty cells

● Con: Depending on cell 
size, objects may 
overlap many filled cells 
or you may waste 
memory on many empty 
cells

Subdivision of space



The BSP tree partitions the 
scene into objects in front of, 
on, and behind a tree of planes.

● When you fire a ray into the scene, 
you test all near-side objects before 
testing far-side objects.

Problems: 
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on 

floating-point math. A

B

C

E

F
D

Popular acceleration structures:
BSP Trees



The kd-tree is a simplification of the 
BSP Tree data structure 

● Space is recursively subdivided by axis-
aligned planes and points on either side 
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion 
time (but this is very optimizable by 
domain knowledge) and O(n2/3) search 
time.

● kd-trees don’t suffer from the 
mathematical slowdowns of BSPs because 
their planes are always axis-aligned.

Image from Wikipedia, bless their 
hearts.

Popular acceleration structures:
kd-trees



The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume to 
remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval 
Hierarchy, Eurographics (2006)

Popular acceleration structures:
Bounding Interval Hierarchies



Hierarchical modeling in action
void renderLevel(GL gl, int level, float t) {
  pushMatrix();
  rotate(t, 0, 1, 0);
  renderSphere(gl);
  if (level > 0) {
    scale(0.75f, 0.75f, 0.75f);
    pushMatrix();
      translate(1, -0.75f, 0);
      renderLevel(gl, level-1, t);
    popMatrix();
    pushMatrix();
      translate(-1, -0.75f, 0);
      renderLevel(gl, level-1, t);
    popMatrix();
  }
  popMatrix();
}



Hierarchical modeling in action


