
Ray Tracing:
Color and Texture

Alex Benton, University of Cambridge – A.

Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

To simulate shadows in ray tracing, fire a ray
from P towards each light Li. If the ray hits
another object before the light, then discard Li
in the sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.

Shadows

Softer shadows

Shadows in nature are not sharp because light sources are not
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration:

a coarse simulation of an integral over a space
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.

O

D
P

L
1

R
ay

s p
er

 sh
ad

ow
 te

st
: 2

0

Light radius: 1

All images anti-aliased with 4x supersampling.
Distance to light in all images: 20 units

R
ay

s p
er

 sh
ad

ow
 te

st
: 1

00

Light radius: 5

Softer shadows

Raytraced spotlights

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by
(max(L•S,0))m.

● Raising m will tighten the spotlight,
but leave the edges soft.

● If you’d prefer a hard-edged spotlight
of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

E

D
P

θ

L

S

Reflection

Reflection rays are calculated as
R = 2(-D•N)N+D

● Finding the reflected color is a
recursive raycast.

● Reflection has scene-dependant
performance impact.

E
D

P

L
1

Q

num bounces=1

num bounces=0 num bounces=2

num bounces=3

Transparency

To add transparency, generate and trace a new
transparency ray with ET=P, DT=D.

To support this in software, make color a 1x4 vector
where the fourth component, ‘alpha’,
determines the weight of the recursed
transparency ray.

E D
DT

Refraction

Snell’s Law:

“The ratio of the sines of the angles of
incidence of a ray of light at the interface
between two materials is equal to the inverse
ratio of the refractive indices of the materials is
equal to the ratio of the speeds of light in the
materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and René Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction

The angle of incidence of a ray of light where it
strikes a surface is the acute angle between the
ray and the surface normal.
The refractive index of a material is a measure
of how much the speed of light1 is reduced
inside the material.

● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

1 Or sound waves or other waves

Refraction in ray tracing

Using Snell’s Law and the angle of
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

E
D

P

P’

N
θ1

θ2

Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in

[-1,1].
● We call this the angle of total

internal reflection: light is trapped
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal
reflection

Refractive index vs transparency

n = 1.0 1.1 1.2 1.3 1.4

0.2
5

0.5
0.7
5

t=
1.

0

1.5

Refraction in action

Aliasing

aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS
the misidentification of a signal frequency,

introducing distortion or error.
"high-frequency sounds are prone to aliasing"
2. COMPUTING
the distortion of a reproduced image so that

curved or inclined lines appear inappropriately
jagged, caused by the mapping of a number of
points to the same pixel.

Aliasing

-

=

Anti-aliasing

Fundamentally, the problem with aliasing is that we’re
sampling an infinitely continuous function (the color of the
scene) with a finite, discrete function (the pixels of the
image).

Image source: www.svi.nl

One solution to this is
super-sampling. If we fire
multiple rays through each
pixel, we can average the
colors computed for every
ray together to a single
blended color.

Anti-aliasing

Single point
● Fire a single ray through the pixel’s center

Super-sampling
● Fire multiple rays through the pixel and

average the result
● Regular grid, random, jittered, Poisson

disks

Adaptive super-sampling
● Fire a few rays through the pixel, check

the variance of the resulting values, if
similar enough then stop else fire more
rays

Types of super-sampling

Regular grid
● Divide the pixel into a number of sub-pixels and

fire a ray through the center of each
● This can still lead to noticeable aliasing unless a

very high resolution of sub-pixel grid is used

Random
● Fire N rays at random points in the pixel
● Replaces aliasing artifacts with noise artifacts

● But the human eye is much less sensitive to
noise than aliasing

● Requires special treatment for animation

Types of super-sampling

Poisson disk
● Fire N rays at random points in the pixel,

with the proviso that no two rays shall
pass through the pixel closer than ε to one
another

● For N rays this produces a better looking
image than pure random sampling

● However, can be very hard to implement
correctly / quickly

Types of super-sampling

Jittered
● Divide the pixel into N sub-pixels and fire one ray at a random

point in each sub-pixel
● Approximates the Poisson disk behavior
● Better than pure random sampling, easier (and significantly

faster) to implement than Poisson

Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently
in one direction from another, as a function of the surface itself. The specular
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

Texture mapping

As observed in last year’s course, real-life objects rarely
consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a surface,
like a decal. Coordinates on the surface are mapped to
coordinates in the texture.

Texture mapping

0, 0

0, 1 1, 1

1, 0

We’ll need to query the color of the
texture at the point in 3D space where the
ray hits our surface. This is typically
done by mapping
 (3D point in local coordinates)
 → U,V coordinates bounded [0-1, 0-1]
 → Texture coordinates bounded by

[image width, image height]

UV mapping the primitives

UV mapping of a unit cube
if |x| == 1:
 u = (z + 1) / 2
 v = (y + 1) / 2
elif |y| == 1:
 u = (x + 1) / 2
 v = (z + 1) / 2
else:
 u = (x + 1) / 2
 v = (y + 1) / 2

UV mapping of a torus of
major radius R
 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 + atan2(y, ((x2 + z2)½ - R) / 2π

UV mapping of a unit sphere
 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 - asin(y) / π

UV mapping is easy for primitives but can be very difficult for arbitrary shapes.

Texture mapping

One constraint on using images for texture is that images
have a finite resolution, and a virtual (ray-traced) camera can
get quite near to the surface of an object.

This can lead to a
single image pixel
covering multiple ray-
traced pixels (or vice-
versa), leading to
blurry or aliased pixels
in your texture.

Procedural texture

Instead of relying on discrete pixels,
you can get infinitely more precise
results with procedurally generated
textures.
Procedural textures compute the

color directly from the U,V
coordinate without an image lookup.
For example, here’s the code for the

torus’ brick pattern (right):

 tx = (int) 10 * u
 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

Confession: I cheated slightly and
multiplied the u coordinate by 4 to repeat
the brick texture four times around the
torus.

References

Procedural textures
David Forsyth - http://luthuli.cs.uiuc.edu/~daf/courses/ComputerGraphics/Week8/Shading.pdf

Noise
Ken Perlin - http://www.noisemachine.com/talk1/

Anisotropic filtering
http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

